Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 276: 116534, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33611194

RESUMEN

High particulate matter (PM) and ozone (O3) concentration in Hong Kong are frequently observed during the summertime typhoon season. Despite the critical effect of a typhoon on air pollution, contributions of vertical wind profile and cloud movement during transboundary air pollution (TAP) on surface PM and O3 concentration have yet to be fully understood. This work is the first study to apply a network of Doppler light detection and ranging (LiDAR) as well as back trajectory analysis to comprehensively analyze the effect of a weak Typhoon (Danas) occurring during 16-19 July 2019 on different variations in PM and O3 concentration. During the typhoon Danas, three types of surface air pollution with five episodes were identified: (1) low PM and high O3 concentration; (2) co-occurring high PM and O3 concentration and (3) high PM and low O3 concentration. Employing our 3D Real-Time Atmospheric Monitoring System (3DREAMs) along with surface observations, we found the important role of TAP in the increases in surface PM and O3 concentration with significant vertical wind shear that transported air pollutants at upper levels, and strong vertical mixing that brought air pollutants to the ground level. Cloud movement related to typhoon periphery, as well as high solar radiation due to sinking motion and remote transport by continental wind, have an impact on local O3 concentration. For the substantial difference in O3 concentration between two air quality measurement sites, the similar vertical aerosol distributions and wind profiles suggest the comparable TAP contributions at the two sites and thus infer the critical role of local O3 photochemical process in the O3 difference. This work comprehensively reveals the influences of a weak typhoon on variations in PM and O3 during the five episodes, providing important references for air quality monitoring and forecast in regions under the influence of typhoon.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Tormentas Ciclónicas , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Hong Kong , Ozono/análisis
2.
J Air Waste Manag Assoc ; 69(1): 97-108, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30204539

RESUMEN

Coal combustion is one of the most significant anthropogenic CO2 and air pollution sources globally. This paper studies the atmospheric emissions of a power plant fuelled with a mixture of industrial pellets (10.5%) and coal (89.5%). Based on the stack measurements, the solid particle number emission, which was dominated by sub-200 nm particles, was 3.4×1011 MJ-1 for the fuel mixture when electrostatic precipitator (ESP) was cleaning the flue gas. The emission factor was 50 mg MJ-1 for particulate mass and 11 740 ng MJ-1 for the black carbon with the ESP. In the normal operation situation of the power plant, i.e., including the flue-gas desulphurisation and fabric filters (FGD and FF), the particle number emission factor was 1.7×108 MJ-1, particulate mass emission factor 2 mg MJ-1 and black carbon emission factor 14 ng MJ-1. Transmission electron microscopy (TEM) analysis supported the particle number size distribution measurement in terms of particle size and the black carbon concentration. The TEM images of the particles showed variability of the particle sizes, morphologies and chemical compositions. The atmospheric measurements, conducted in the flue-gas plume, showed that the flue-gas dilutes closed to background concentrations in 200 sec. However, an increase in particle number concentration was observed when the flue gas aged. This increase in particle number concentration was interpret as formation of new particles in the atmosphere. In general, the study highlights the importance of detailed particle measurements when utilizing new fuels in existing power plants. Implications: CO2 emissions of energy production decrease when substituting coal with biofuels. The effects of fuels changes on particle emission characteristics have not been studied comprehensively. In this study conducted for a real-scale power plant, co-combustion of wood pellets and coal caused elevated black carbon emissions. However, it was beneficial from the total particle number and particulate mass emission point of view. Flue-gas cleaning can significantly decrease the pollutant concentrations but also changes the characteristics of emitted particles. Atmospheric measurements implicated that the new particle formation in the atmospheric flue-gas plume should be taken into account when evaluating all effects of fuel changes." Are implication statements part of the manuscript?


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Combustibles Fósiles/análisis , Centrales Eléctricas/normas , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Carbón Mineral/análisis , Ceniza del Carbón/análisis , Salud Ambiental/métodos , Salud Ambiental/normas , Contaminación Ambiental/análisis , Contaminación Ambiental/prevención & control , Calor , Humanos , Tamaño de la Partícula , Madera/análisis , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...