Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Psychol Med ; : 1-9, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757184

RESUMEN

BACKGROUND: Amygdala and dorsal anterior cingulate cortex responses to facial emotions have shown promise in predicting treatment response in medication-free major depressive disorder (MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more chronic, difficult-to-treat forms of MDD. METHODS: Forty-five people with current MDD who had not responded to ⩾2 serotonergic antidepressants (n = 42, meeting pre-defined fMRI minimum quality thresholds) were enrolled and followed up over four months of standard primary care. Prior to medication review, subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent effects for sad v. happy faces from two pre-registered a priori defined regions: bilateral amygdala and dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage change on the self-reported Quick Inventory of Depressive Symptomatology (16-item). RESULTS: We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral amygdala activation for sad v. happy faces predicted favorable clinical outcomes (rs[38] = 0.40, p = 0.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex activation (rs[38] = 0.18, p = 0.29), nor when using voxel-based whole-brain analyses (voxel-based Family-Wise Error-corrected p < 0.05). Predictive effects were mainly driven by the right amygdala whose response to happy faces was reduced in patients with higher anxiety levels. CONCLUSIONS: We confirmed the prediction that a lower amygdala response to negative v. positive facial expressions might be an adaptive neural signature, which predicts subsequent symptom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala responses.

2.
Biol Psychiatry Glob Open Sci ; 4(3): 100308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645404

RESUMEN

Background: A seminal study found higher subgenual frontal cortex resting-state connectivity with 2 left ventral frontal regions and the dorsal midbrain to predict better response to psychotherapy versus medication in individuals with treatment-naïve major depressive disorder (MDD). Here, we examined whether these subgenual networks also play a role in the pathophysiology of clinical outcomes in MDD with early treatment resistance in primary care. Methods: Forty-five people with current MDD who had not responded to ≥2 serotonergic antidepressants (n = 43, meeting predefined functional magnetic resonance imaging minimum quality thresholds) were enrolled and followed over 4 months of standard care. Functional magnetic resonance imaging resting-state connectivity between the preregistered subgenual frontal cortex seed and 3 previously identified left ventromedial, ventrolateral prefrontal/insula, and dorsal midbrain regions was extracted. The clinical outcome was the percentage change on the self-reported 16-item Quick Inventory of Depressive Symptomatology. Results: We observed a reversal of our preregistered hypothesis in that higher resting-state connectivity between the subgenual cortex and the a priori ventrolateral prefrontal/insula region predicted favorable rather than unfavorable clinical outcomes (rs39 = -0.43, p = .006). This generalized to the sample including participants with suboptimal functional magnetic resonance imaging quality (rs43 = -0.35, p = .02). In contrast, no effects (rs39 = 0.12, rs39 = -0.01) were found for connectivity with the other 2 preregistered regions or in a whole-brain analysis (voxel-based familywise error-corrected p < .05). Conclusions: Subgenual connectivity with the ventrolateral prefrontal cortex/insula is relevant for subsequent clinical outcomes in current MDD with early treatment resistance. Its positive association with favorable outcomes could be explained primarily by psychosocial rather than the expected pharmacological changes during the follow-up period.


Evidence has shown that connectivity of the subgenual cortex, a frontal midline brain region, with 3 other brain regions can predict whether people with never-treated depression benefit more from psychological or medication-based treatments. Here, using resting-state fMRI, we show that subgenual connections with one of these regions, the left ventrolateral prefrontal/insula, also predict future average depression levels in people with difficult-to-treat depression. These data suggest that functional connectivity between these regions may be linked to clinical outcomes in major depressive disorder.

3.
Eur Eat Disord Rev ; 32(3): 575-588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38303559

RESUMEN

OBJECTIVE: We present the protocol of a feasibility randomised controlled trial (RCT) of intermittent theta burst stimulation (iTBS) for young people with anorexia nervosa (AN). Effective first-line psychological therapies exist for young people with AN, but little is known about how to treat those who do not respond. Non-invasive neuromodulation, such as iTBS, could address unmet treatment needs by targeting neurocircuitry associated with the development and/or maintenance of AN. DESIGN: Sixty-six young people (aged 13-30 years) with persistent AN will be randomly allocated to receive 20 sessions of real or sham iTBS over the left dorsolateral prefrontal cortex in addition to their usual treatment. Outcomes will be measured at baseline, post-treatment (1-month post-randomisation) and 4-months post-randomisation (when unblinding will occur). Additional open follow-ups will be conducted at 12- and 24-months post-randomisation. The primary feasibility outcome is the proportion of participants retained in the study at 4-months. Secondary outcomes include AN symptomatology, other psychopathology, quality of life, service utilisation, neurocognitive processes, and neuroimaging measures. DISCUSSION: Findings will inform the development of a future large-scale RCT. They will also provide exploratory data on treatment efficacy, and neural and neurocognitive predictors and correlates of treatment response to iTBS in AN.


Asunto(s)
Anorexia Nerviosa , Estimulación Magnética Transcraneal , Humanos , Adolescente , Estimulación Magnética Transcraneal/métodos , Estudios de Seguimiento , Anorexia Nerviosa/terapia , Anorexia Nerviosa/psicología , Estudios de Factibilidad , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Pain ; 165(4): 941-950, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37878469

RESUMEN

ABSTRACT: The high frequency stimulation (HFS) model can be used alongside quantitative sensory testing (QST) to assess the sensitisation of central nociceptive pathways. However, the validity and between-session reliability of using QST z -score profiles to measure changes in mechanical and thermal afferent pathways in the HFS model are poorly understood. In this study, 32 healthy participants underwent QST before and after HFS (5× 100 Hz trains; 10× electrical detection threshold) in the same heterotopic skin area across 2 repeated sessions. The only mechanical QST z -score profiles that demonstrated a consistent gain of function across repeated test sessions were mechanical pain threshold (MPT) and mechanical pain sensitivity (MPS), which were associated with moderate and good reliability, respectively. There was no relationship between HFS intensity and MPT and MPS z -score profiles. There was no change in low intensity, but a consistent facilitation of high-intensity pin prick stimuli in the mechanical stimulus response function across repeated test sessions. There was no change in cold pain threshold (CPT) and heat pain threshold (HPT) z -score profiles across session 1 and 2, which were associated with moderate and good reliability, respectively. There were inconsistent changes in the sensitivity to innocuous thermal QST parameters, with cool detection threshold (CDT), warm detection threshold (WDT), and thermal sensory limen (TSL) all producing poor reliability. These data suggest that HFS-induced changes in MPS z -score profiles is a reliable way to assess experimentally induced central sensitisation and associated secondary mechanical hyperalgesia in healthy participants.


Asunto(s)
Nocicepción , Umbral del Dolor , Humanos , Dimensión del Dolor , Reproducibilidad de los Resultados , Umbral del Dolor/fisiología , Dolor , Hiperalgesia/diagnóstico
5.
Psychopharmacology (Berl) ; 240(10): 2045-2060, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37500785

RESUMEN

RATIONALE: Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES: This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS: We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS: Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS: This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Masculino , Humanos , Niño , Adolescente , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Encéfalo , Lóbulo Frontal , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Imagen por Resonancia Magnética
6.
Headache ; 63(6): 771-787, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37337681

RESUMEN

OBJECTIVE: To identify changes in regional cerebral blood flow (CBF) associated with premonitory symptoms (PS) of nitroglycerin (NTG)-triggered migraine attacks. BACKGROUND: PS could provide insights into attack initiation and alterations in neuronal function prior to headache onset. METHODS: We undertook a functional imaging study using a double-blind placebo-controlled randomized approach in patients with migraine who spontaneously experienced PS, and in whom PS and migraine-like headache could be induced by administration of NTG. All study visits took place in a dedicated clinical research facility housing a monitoring area with clinical beds next to a 3Tesla magnetic resonance imaging scanner. Fifty-three patients with migraine were enrolled; imaging on at least one triggered visit was obtained from 25 patients, with 21 patients completing the entire imaging protocol including a placebo visit. Whole brain CBF maps were acquired using 3D pseudo-continuous arterial spin labeling (3D pCASL). RESULTS: The primary outcome was that patients with migraine not taking preventive treatment (n = 12) displayed significant increases in CBF in anterior cingulate cortex, caudate, midbrain, lentiform, amygdala and hippocampus (p < 0.05 family-wise error-corrected) during NTG-induced PS. A separate region of interest analysis revealed significant CBF increases in the region of the hypothalamus (p = 0.006, effect size 0.77). Post hoc analyses revealed significant reductions in CBF over the occipital cortices in participants with a history of migraine with underlying aura (n = 14). CONCLUSIONS: We identified significant regional CBF changes associated with NTG-induced PS, consistent with other investigations and with novel findings, withstanding statistical comparison against placebo. These findings were not present in patients who continually took preventive medication. Additional findings were identified only in participants who experience migraine with aura. Understanding this biological and treatment-related heterogeneity is vital to evaluating functional imaging outcomes in migraine research.


Asunto(s)
Trastornos Migrañosos , Humanos , Marcadores de Spin , Trastornos Migrañosos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Nitroglicerina/efectos adversos , Cefalea , Circulación Cerebrovascular/fisiología
7.
Neuroimage Clin ; 39: 103453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352570

RESUMEN

BACKGROUND: Self-blame-related fMRI measures were shown to predict subsequent recurrence in remitted major depressive disorder (MDD). Their role in current MDD, however, is unknown. We hypothesised that these neural signatures reflect a highly recurrent but remitting course of MDD and therefore predict favourable outcomes over a four-month follow-up period in current MDD. METHODS: Forty-five participants with current MDD and non-responders to at least two serotonergic antidepressants, were encouraged to optimise their medication and followed up after receiving four months of primary care treatment-as-usual. Prior to their medication review, participants completed an fMRI paradigm in which they viewed self- and other-blame emotion-evoking statements. Thirty-nine participants met pre-defined fMRI data minimum quality thresholds. Psychophysiological interaction analysis was used to determine baseline connectivity of the right superior anterior temporal lobe (RSATL), with an a priori BA25 region-of-interest for self-blaming vs other-blaming emotions, using Quick Inventory of Depressive Symptomatology (16-item) percentage change as a covariate. RESULTS: We corroborated our pre-registered hypothesis that a favourable clinical outcome was associated with higher self-blame-selective RSATL-BA25 connectivity (Family-Wise Error-corrected p <.05 over the a priori BA25 region-of-interest; rs(34) = -0.47, p =.005). This generalised to the sample including participants with suboptimal fMRI quality (rs(39) = -0.32, p =.05). CONCLUSIONS: This study shows that neural signatures of overgeneralised self-blame are relevant for prognostic stratification of current treatment-resistant MDD. Future studies need to confirm whether this neural signature indeed represents a trait-like feature of a fully remitting subtype of MDD, or whether it is also modulated by depressive state and related to treatment effects.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/psicología , Corteza Cerebral , Emociones , Lóbulo Temporal , Pronóstico , Imagen por Resonancia Magnética
8.
Target Oncol ; 18(3): 403-413, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37103658

RESUMEN

BACKGROUND: Off-target central nervous system (CNS) effects are associated with androgen receptor (AR)-targeting treatments for prostate cancer. Darolutamide is a structurally distinct AR inhibitor with low blood-brain barrier penetration. OBJECTIVE: We compared cerebral blood flow (CBF) in grey matter and specific regions related to cognition after darolutamide, enzalutamide, or placebo administration, using arterial spin-label magnetic resonance imaging (ASL-MRI). METHODS: This phase I, randomized, placebo-controlled, three-period crossover study administered single doses of darolutamide, enzalutamide, or placebo to 23 healthy males (aged 18-45 years) at 6-week intervals. ASL-MRI mapped CBF 4 h post-treatment. Treatments were compared using paired t-tests. RESULTS: Drug concentrations during scans confirmed similar unbound exposure of darolutamide and enzalutamide, with complete washout between treatments. A significant localized 5.2% (p = 0.01) and 5.9% (p < 0.001) CBF reduction in the temporo-occipital cortices was observed for enzalutamide versus placebo and versus darolutamide, respectively, with no significant differences for darolutamide versus placebo. Enzalutamide reduced CBF in all prespecified regions, with significant reductions versus placebo (3.9%, p = 0.045) and versus darolutamide (4.4%, p = 0.037) in the left and right dorsolateral prefrontal cortices, respectively. Darolutamide showed minimal changes in CBF versus placebo in cognition-relevant regions. CONCLUSIONS: Darolutamide did not significantly alter CBF, consistent with its low blood-brain barrier penetration and low risk of CNS-related adverse events. A significant reduction in CBF was observed with enzalutamide. These results may be relevant to cognitive function with early and extended use of second-generation AR inhibitors, and warrant further investigation in patients with prostate cancer. TRIAL REGISTRATION NUMBER: NCT03704519; date of registration: October 2018.


Androgens, or male sex hormones, bind to androgen receptors within prostate cells and can cause growth of prostate cancer. The treatment of prostate cancer often includes drugs that bind to androgen receptors, called androgen receptor inhibitors, keeping androgens from binding to the receptors and preventing prostate cancer growth. In clinical studies, these drugs may have adverse effects on the central nervous system, or brain, including dizziness, falls, and impaired thinking and problem solving. This study compared the effects of two androgen receptor inhibitors, darolutamide and enzalutamide, and placebo on blood flow in the brain. Blood flow was measured by a type of magnetic resonance imaging in healthy men after receiving a single dose of treatment. Blood flow in the brain was reduced by enzalutamide compared with both placebo and darolutamide. Darolutamide did not decrease brain blood flow. This lack of effect on brain blood flow is in line with preclinical studies that showed darolutamide's limited ability to cross the blood­brain barrier, which is the naturally occurring barrier that protects the brain from harmful substances. In clinical studies of patients with prostate cancer treated with darolutamide, adverse effects on the brain have occurred in similar proportions of patients receiving darolutamide and placebo. In contrast, enzalutamide treatment has an increased risk of adverse effects on the brain versus placebo. The results of this study provide information on the effects of these androgen receptor inhibitors on brain blood flow that may be related to their adverse effects on the brain and its functioning.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Estudios Cruzados , Antagonistas de Receptores Androgénicos/uso terapéutico , Nitrilos/uso terapéutico , Circulación Cerebrovascular
9.
Transl Psychiatry ; 13(1): 133, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087490

RESUMEN

Autism spectrum disorder (ASD) often co-occurs with attention-deficit/hyperactivity disorder (ADHD) and people with these conditions have frontostriatal functional atypicality during motor inhibition. We compared the neural and neurocognitive correlates of motor inhibition and performance monitoring in young adult males with "pure" and combined presentations with age-and sex-matched typically developing controls, to explore shared or disorder-specific atypicality. Males aged 20-27 years with typical development (TD; n = 22), ASD (n = 21), combined diagnoses ASD + ADHD (n = 23), and ADHD (n = 25) were compared using a modified tracking fMRI stop-signal task that measures motor inhibition and performance monitoring while controlling for selective attention. In addition, they performed a behavioural go/no-go task outside the scanner. While groups did not differ behaviourally during successful stop trials, the ASD + ADHD group relative to other groups had underactivation in typical performance monitoring regions of bilateral anterior insula/inferior frontal gyrus, right posterior thalamus, and right middle temporal gyrus/hippocampus during failed inhibition, which was associated with increased stop-signal reaction time. In the behavioural go/no-go task, both ADHD groups, with and without ASD, had significantly lower motor inhibition performance compared to TD controls. In conclusion, only young adult males with ASD + ADHD had neurofunctional atypicality in brain regions associated with performance monitoring, while inhibition difficulties on go/no-go task performance was shared with ADHD. The suggests that young people with ASD + ADHD are most severely impaired during motor inhibition tasks compared to ASD and ADHD but do not reflect a combination of the difficulties associated with the pure disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Masculino , Humanos , Adulto Joven , Adolescente , Encéfalo , Corteza Prefrontal , Tálamo/diagnóstico por imagen , Imagen por Resonancia Magnética
10.
Neuroimage ; 271: 120018, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36935083

RESUMEN

Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.


Asunto(s)
Anestesia , Propofol , Humanos , Propofol/farmacología , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Estado de Conciencia/fisiología , Vías Nerviosas/fisiología
11.
Psychol Med ; 53(10): 4732-4741, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775365

RESUMEN

BACKGROUND: The mechanisms underlying the antipsychotic potential of cannabidiol (CBD) remain unclear but growing evidence indicates that dysfunction in the insula, a key brain region involved in the processing of motivationally salient stimuli, may have a role in the pathophysiology of psychosis. Here, we investigate whether the antipsychotic mechanisms of CBD are underpinned by their effects on insular activation, known to be involved in salience processing. METHODS: A within-subject, crossover, double-blind, placebo-controlled investigation of 19 healthy controls and 15 participants with early psychosis was conducted. Administration of a single dose of CBD was compared with placebo in psychosis participants while performing the monetary incentive delay task, an fMRI paradigm. Anticipation of reward and loss were used to contrast motivationally salient stimuli against a neutral control condition. RESULTS: No group differences in brain activation between psychosis patients compared with healthy controls were observed. Attenuation of insula activation was observed following CBD, compared to placebo. Sensitivity analyses controlling for current cannabis use history did not affect the main results. CONCLUSION: Our findings are in accordance with existing evidence suggesting that CBD modulates brain regions involved in salience processing. Whether such effects underlie the putative antipsychotic effects of CBD remains to be investigated.


Asunto(s)
Antipsicóticos , Cannabidiol , Trastornos Psicóticos , Humanos , Antipsicóticos/farmacología , Encéfalo , Cannabidiol/farmacología , Método Doble Ciego , Imagen por Resonancia Magnética , Motivación , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/tratamiento farmacológico
12.
Psychol Med ; 53(8): 3471-3479, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35197142

RESUMEN

BACKGROUND: Negative symptoms are one of the most incapacitating features of Schizophrenia but their pathophysiology remains unclear. They have been linked to alterations in grey matter in several brain regions, but findings have been inconsistent. This may reflect the investigation of relatively small patient samples, and the confounding effects of chronic illness and exposure to antipsychotic medication. We sought to address these issues by investigating concurrently grey matter volumes (GMV) and cortical thickness (CTh) in a large sample of antipsychotic-naïve or minimally treated patients with First-Episode Schizophrenia (FES). METHODS: T1-weighted structural MRI brain scans were acquired from 180 antipsychotic-naïve or minimally treated patients recruited as part of the OPTiMiSE study. The sample was stratified into subgroups with (N = 88) or without (N = 92) Prominent Negative Symptoms (PMN), based on PANSS ratings at presentation. Regional GMV and CTh in the two groups were compared using Voxel-Based Morphometry (VBM) and FreeSurfer (FS). Between-group differences were corrected for multiple comparisons via Family-Wise Error (FWE) and Monte Carlo z-field simulation respectively at p < 0.05 (2-tailed). RESULTS: The presence of PMN symptoms was associated with larger left inferior orbitofrontal volume (p = 0.03) and greater CTh in the left lateral orbitofrontal gyrus (p = 0.007), but reduced CTh in the left superior temporal gyrus (p = 0.009). CONCLUSIONS: The findings highlight the role of orbitofrontal and temporal cortices in the pathogenesis of negative symptoms of Schizophrenia. As they were evident in generally untreated FEP patients, the results are unlikely to be related to effects of previous treatment or illness chronicity.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/uso terapéutico , Antipsicóticos/farmacología , Imagen por Resonancia Magnética/métodos , Encéfalo , Sustancia Gris/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
13.
Hum Brain Mapp ; 44(5): 1901-1912, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36546653

RESUMEN

The identification of meaningful functional magnetic resonance imaging (fMRI) biomarkers requires measures that reliably capture brain performance across different subjects and over multiple scanning sessions. Recent developments in fMRI acquisition, such as the introduction of multiband (MB) protocols and in-plane acceleration, allow for increased scanning speed and improved temporal resolution. However, they may also lead to reduced temporal signal to noise ratio and increased signal leakage between simultaneously excited slices. These methods have been adopted in several scanning modalities including diffusion weighted imaging and fMRI. To our knowledge, no study has formally compared the reliability of the same resting-state fMRI (rs-fMRI) metrics (amplitude of low-frequency fluctuations; seed-to-voxel and region of interest [ROI]-to-ROI connectivity) across conventional single-band fMRI and different MB acquisitions, with and without in-plane acceleration, across three sessions. In this study, 24 healthy older adults were scanned over three visits, on weeks 0, 1, and 4, and, on each occasion, underwent a conventional single band rs-fMRI scan and three different rs-fMRI scans with MB factors 4 and 6, with and without in-plane acceleration. Across all three rs-fMRI metrics, the reliability scores were highest with MB factor 4 with no in-plane acceleration for cortical areas and with conventional single band for subcortical areas. Recommendations for future research studies are discussed.


Asunto(s)
Mapeo Encefálico , Envejecimiento Saludable , Humanos , Anciano , Mapeo Encefálico/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
14.
Schizophr Bull ; 49(2): 309-318, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36226895

RESUMEN

BACKGROUND AND HYPOTHESIS: Psychotic Like Experiences (PLEs) are widely prevalent in children and adolescents and increase the risk of developing psychosis. Cortical gyrification characterizes brain development from in utero till about the first 2 years of life and can be measured in later years as static gyrification changes demonstrating neurodevelopment and dynamic gyrification changes reflecting brain maturation during adolescence. We hypothesized that PLEs would be associated with static cortical gyrification changes reflecting a neurodevelopmental abnormality. STUDY DESIGN: We studied 1252 adolescents recruited in the IMAGEN consortium. We used a longitudinal study design, with Magnetic Resonance Imaging measurements at age 14 years and age 19 years; measurement of PLEs using the Community Assessment of Psychic Experiences (CAPE) questionnaire at age 19 years; and clinical diagnoses at age 23 years. STUDY RESULTS: Our results show static gyrification changes in adolescents with elevated PLEs on 3 items of the CAPE-voice hearing, unusual experiences of receiving messages, and persecutory ideas-with lower cortical gyrification in fronto-temporal regions in the left hemisphere. This group also demonstrated dynamic gyrification changes with higher cortical gyrification in right parietal cortex in late adolescence; a finding that we replicated in an independent sample of patients with first-episode psychosis. Adolescents with high PLEs were also 5.6 times more likely to transition to psychosis in adulthood by age 23 years. CONCLUSIONS: This is the largest study in adolescents that demonstrates fronto-temporal abnormality of cortical gyrification as a potential biomarker for vulnerability to PLEs and transition to psychosis.


Asunto(s)
Trastornos Psicóticos , Niño , Humanos , Adolescente , Adulto Joven , Adulto , Estudios Longitudinales , Trastornos Psicóticos/diagnóstico , Encuestas y Cuestionarios , Relaciones Interpersonales , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
15.
Biol Psychiatry Glob Open Sci ; 2(4): 350-367, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36324660

RESUMEN

Altered neurocognitive functioning is a key feature of attention-deficit/hyperactivity disorder (ADHD), and increasing numbers of studies assess task-based functional connectivity in the disorder. We systematically reviewed and critically appraised functional magnetic resonance imaging (fMRI) task-based functional connectivity studies in ADHD. A systematic search conducted up to September 2020 found 34 studies, including 51 comparisons. Comparisons were divided into investigations of ADHD neuropathology (37 comparing ADHD and typical development, 2 comparing individuals with ADHD and their nonsymptomatic siblings, 2 comparing remitted and persistent ADHD, and 1 exploring ADHD symptom severity) and the effects of interventions (8 investigations of stimulant effects and 1 study of fMRI neurofeedback). Large heterogeneity in study methodologies prevented a meta-analysis; thus, the data were summarized as a narrative synthesis. Across cognitive domains, functional connectivity in the cingulo-opercular, sensorimotor, visual, subcortical, and executive control networks in ADHD consistently differed from neurotypical populations. Furthermore, literature comparing individuals with ADHD and their nonsymptomatic siblings as well as adults with ADHD and their remitted peers showed ADHD-related abnormalities in similar sensorimotor and subcortical (primarily striatal) networks. Interventions modulated those dysfunctional networks, with the most consistent action on functional connections with the striatum, anterior cingulate cortex, occipital regions, and midline default mode network structures. Although methodological issues limited many of the reviewed studies, the use of task-based functional connectivity approaches has the potential to broaden the understanding of the neural underpinnings of ADHD and the mechanisms of action of ADHD treatments.

16.
Front Hum Neurosci ; 16: 980280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438643

RESUMEN

Leading Eigenvector Dynamics Analysis (LEiDA) is an analytic approach that characterizes brain activity recorded with functional Magnetic Resonance Imaging (fMRI) as a succession of discrete phase-locking patterns, or states, that consistently recur over time across all participants. LEiDA allows for the extraction of three state-related measures which have previously been key to gaining a better understanding of brain dynamics in both healthy and clinical populations: the probability of occurrence of a given state, its lifetime and the probability of switching from one state to another. The degree to which test-retest reliability of the LEiDA measures may be affected by increasing MRI multiband (MB) factors in comparison with single band sequences is yet to be established. In this study, 24 healthy older adults were scanned over three sessions, on weeks 0, 1, and 4. On each visit, they underwent a conventional single band resting-state fMRI (rs-fMRI) scan and three different MB rs-fMRI scans, with MB factors of 4, with and without in-plane acceleration, and 6 without in-plane acceleration. We found test-retest reliability scores to be significantly higher with MB factor 4 with and without in-plane acceleration for most cortical networks. These findings will inform the choice of acquisition parameters for future studies and clinical trials.

18.
Biol Psychiatry ; 92(9): 730-738, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031441

RESUMEN

BACKGROUND: The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and dependencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data. METHODS: We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251). RESULTS: In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of undernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients. CONCLUSIONS: The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.


Asunto(s)
Anorexia Nerviosa , Anorexia Nerviosa/diagnóstico por imagen , Anorexia Nerviosa/terapia , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Delgadez
19.
Transl Psychiatry ; 12(1): 344, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008395

RESUMEN

Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.


Asunto(s)
Trastornos Psicóticos , Encéfalo/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Trastornos Psicóticos/metabolismo
20.
Sci Rep ; 12(1): 12005, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835813

RESUMEN

The multicontrast EPImix sequence generates six contrasts, including a T1-weighted scan, in ~1 min. EPImix shows comparable diagnostic performance to conventional scans under qualitative clinical evaluation, and similarities in simple quantitative measures including contrast intensity. However, EPImix scans have not yet been compared to standard MRI scans using established quantitative measures. In this study, we compared conventional and EPImix-derived T1-weighted scans of 64 healthy participants using tissue volume estimates and predicted brain-age. All scans were pre-processed using the SPM12 DARTEL pipeline, generating measures of grey matter, white matter and cerebrospinal fluid volume. Brain-age was predicted using brainageR, a Gaussian Processes Regression model previously trained on a large sample of standard T1-weighted scans. Estimates of both global and voxel-wise tissue volume showed significantly similar results between standard and EPImix-derived T1-weighted scans. Brain-age estimates from both sequences were significantly correlated, although EPImix T1-weighted scans showed a systematic offset in predictions of chronological age. Supplementary analyses suggest that this is likely caused by the reduced field of view of EPImix scans, and the use of a brain-age model trained using conventional T1-weighted scans. However, this systematic error can be corrected using additional regression of T1-predicted brain-age onto EPImix-predicted brain-age. Finally, retest EPImix scans acquired for 10 participants demonstrated high test-retest reliability in all evaluated quantitative measurements. Quantitative analysis of EPImix scans has potential to reduce scanning time, increasing participant comfort and reducing cost, as well as to support automation of scanning, utilising active learning for faster and individually-tailored (neuro)imaging.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...