Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Brain Commun ; 6(2): fcae107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601916

RESUMEN

Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38336573

RESUMEN

BACKGROUND: Previous studies have examined disparities in dementia care that affect the U.S. Hispanic/Latino population, including clinician bias, lack of cultural responsiveness, and less access to health care. However, there is limited research that specifically investigates the impact of language barriers to health disparities in dementia diagnosis. METHODS: In this retrospective cross-sectional study, 12,080 English- or Spanish- speaking patients who received an initial diagnosis of mild cognitive impairment (MCI) or dementia between July 2017 and June 2019 were identified in the Yale New Haven Health (YNHH) electronic medical record. To evaluate the timeliness of diagnosis, an initial diagnosis of MCI was classified as "timely", while an initial diagnosis of dementia was considered "delayed." Comprehensiveness of diagnosis was assessed by measuring the presence of laboratory studies, neuroimaging, specialist evaluation, and advanced diagnostics six months before or after diagnosis. Binomial logistic regressions were calculated with and without adjustment for age, legal sex, ethnicity, neighborhood disadvantage, and medical comorbidities. RESULTS: Spanish speakers were less likely to receive a timely diagnosis when compared with English speakers both before (unadjusted OR, 0.65; 95% CI, 0.53-0.80, p <0.0001) and after adjusting for covariates (adjusted OR, 0.55; 95% CI, 0.40-0.75, p = 0.0001). Diagnostic services were provided equally between groups, except for referrals to geriatrics, which were more frequent among Spanish-speaking patients. A subgroup analysis revealed that Spanish-speaking Hispanic/Latino patients were less likely to receive a timely diagnosis compared to English-speaking Hispanic/Latino patients (adjusted OR, 0.53; 95% CI, 0.38-0.73, p = 0.0001). CONCLUSIONS: Non-English language preference is likely to be a contributing factor to timely diagnosis of cognitive impairment. In this study, Spanish language preference rather than Hispanic/Latino ethnicity was a significant predictor of a less timely diagnosis of cognitive impairment. Policy changes are needed to reduce barriers in cognitive disorders care for Spanish-speaking patients.

4.
Alzheimers Res Ther ; 16(1): 20, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273408

RESUMEN

BACKGROUND: Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aß) is central to AD pathophysiology, and Aß oligomers are among the most toxic forms of Aß. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aß oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aß oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS: The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS: No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS: The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION: The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proyectos Piloto , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo
5.
Am J Geriatr Psychiatry ; 32(1): 17-28, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37673749

RESUMEN

OBJECTIVE: Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS: DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS: Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION: In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Tomografía de Emisión de Positrones/métodos , Imagen Multimodal , Encéfalo/metabolismo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso/metabolismo
6.
Neuroimage Clin ; 39: 103457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37422964

RESUMEN

BACKGROUND: Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS: [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS: Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS: This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Análisis de Componente Principal , Tomografía de Emisión de Positrones , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Disfunción Cognitiva/patología , Encéfalo/patología
8.
Alzheimers Dement ; 18(12): 2527-2536, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35174954

RESUMEN

INTRODUCTION: For 30 years synapse loss has been referred to as the major pathological correlate of cognitive impairment in Alzheimer's disease (AD). However, this statement is based on remarkably few patients studied by autopsy or biopsy. With the recent advent of synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, we have begun to evaluate the consequences of synaptic alterations in vivo. METHODS: We examined the relationship between synaptic density measured by [11 C]UCB-J PET and neuropsychological test performance in 45 participants with early AD. RESULTS: Global synaptic density showed a significant positive association with global cognition and performance on five individual cognitive domains in participants with early AD. Synaptic density was a stronger predictor of cognitive performance than gray matter volume. CONCLUSION: These results confirm neuropathologic studies demonstrating a significant association between synaptic density and cognitive performance, and suggest that this correlation extends to the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones/métodos , Sinapsis/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Cognición , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Neurobiol Aging ; 111: 44-53, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963063

RESUMEN

Sites of early neuropathologic change provide important clues regarding the initial clinical features of Alzheimer's disease (AD). We have shown significant reductions in hippocampal synaptic density in participants with AD, consistent with the early degeneration of entorhinal cortical (ERC) cells that project to hippocampus via the perforant path. In this study, [11C]UCB-J binding to synaptic vesicle glycoprotein 2A (SV2A) and [18F]flortaucipir binding to tau were measured via PET in 10 participants with AD (5 mild cognitive impairment, 5 mild dementia) and 10 cognitively normal participants. In the overall sample, ERC tau was inversely associated with hippocampal synaptic density (r = -0.59, p = 0.009). After correction for partial volume effects, the association of ERC tau with hippocampal synaptic density was stronger in the overall sample (r = -0.61, p = 0.007) and in the AD group where the effect size was large, but not statistically significant (r = -0.58, p = 0.06). This inverse association of ERC tau and hippocampal synaptic density may reflect synaptic failure due to tau pathology in ERC neurons projecting to the hippocampus.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Cognición , Corteza Entorrinal/metabolismo , Envejecimiento Saludable/metabolismo , Envejecimiento Saludable/patología , Hipocampo/patología , Sinapsis/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/psicología , Corteza Entorrinal/patología , Envejecimiento Saludable/psicología
10.
Med Phys ; 48(9): 5115-5129, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34224153

RESUMEN

PURPOSE: Positron emission tomography (PET) imaging with various tracers is increasingly used in Alzheimer's disease (AD) studies. However, access to PET scans using new or less-available tracers with sophisticated synthesis and short half-life isotopes may be very limited. Therefore, it is of great significance and interest in AD research to assess the feasibility of generating synthetic PET images of less-available tracers from the PET image of another common tracer, in particular 18 F-FDG. METHODS: We implemented advanced deep learning methods using the U-Net model to predict 11 C-UCB-J PET images of synaptic vesicle protein 2A (SV2A), a surrogate of synaptic density, from 18 F-FDG PET data. Dynamic 18 F-FDG and 11 C-UCB-J scans were performed in 21 participants with normal cognition (CN) and 33 participants with Alzheimer's disease (AD). Cerebellum was used as the reference region for both tracers. For 11 C-UCB-J image prediction, four network models were trained and tested, which included 1) 18 F-FDG SUV ratio (SUVR) to 11 C-UCB-J SUVR, 2) 18 F-FDG Ki ratio to 11 C-UCB-J SUVR, 3) 18 F-FDG SUVR to 11 C-UCB-J distribution volume ratio (DVR), and 4) 18 F-FDG Ki ratio to 11 C-UCB-J DVR. The normalized root mean square error (NRMSE), structure similarity index (SSIM), and Pearson's correlation coefficient were calculated for evaluating the overall image prediction accuracy. Mean bias of various ROIs in the brain and correlation plots between predicted images and true images were calculated for ROI-based prediction accuracy. Following a similar training and evaluation strategy, 18 F-FDG SUVR to 11 C-PiB SUVR network was also trained and tested for 11 C-PiB static image prediction. RESULTS: The results showed that all four network models obtained satisfactory 11 C-UCB-J static and parametric images. For 11 C-UCB-J SUVR prediction, the mean ROI bias was -0.3% ± 7.4% for the AD group and -0.5% ± 7.3% for the CN group with 18 F-FDG SUVR as the input, -0.7% ± 8.1% for the AD group, and -1.3% ± 7.0% for the CN group with 18 F-FDG Ki ratio as the input. For 11 C-UCB-J DVR prediction, the mean ROI bias was -1.3% ± 7.5% for the AD group and -2.0% ± 6.9% for the CN group with 18 F-FDG SUVR as the input, -0.7% ± 9.0% for the AD group, and -1.7% ± 7.8% for the CN group with 18 F-FDG Ki ratio as the input. For 11 C-PiB SUVR image prediction, which appears to be a more challenging task, the incorporation of additional diagnostic information into the network is needed to control the bias below 5% for most ROIs. CONCLUSIONS: It is feasible to use 3D U-Net-based methods to generate synthetic 11 C-UCB-J PET images from 18 F-FDG images with reasonable prediction accuracy. It is also possible to predict 11 C-PiB SUVR images from 18 F-FDG images, though the incorporation of additional non-imaging information is needed.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedad de Alzheimer/diagnóstico por imagen , Compuestos de Anilina , Encéfalo , Fluorodesoxiglucosa F18 , Humanos , Tomografía de Emisión de Positrones
12.
J Cereb Blood Flow Metab ; 41(9): 2395-2409, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33757318

RESUMEN

[11C]UCB-J PET for synaptic vesicle glycoprotein 2 A (SV2A) has been proposed as a suitable marker for synaptic density in Alzheimer's disease (AD). We compared [11C]UCB-J binding for synaptic density and [18F]FDG uptake for metabolism (correlated with neuronal activity) in 14 AD and 11 cognitively normal (CN) participants. We assessed both absolute and relative outcome measures in brain regions of interest, i.e., K1 or R1 for [11C]UCB-J perfusion, VT (volume of distribution) or DVR to cerebellum for [11C]UCB-J binding to SV2A; and Ki or KiR to cerebellum for [18F]FDG metabolism. [11C]UCB-J binding and [18F]FDG metabolism showed a similar magnitude of reduction in the medial temporal lobe of AD -compared to CN participants. However, the magnitude of reduction of [11C]UCB-J binding in neocortical regions was less than that observed with [18F]FDG metabolism. Inter-tracer correlations were also higher in the medial temporal regions between synaptic density and metabolism, with lower correlations in neocortical regions. [11C]UCB-J perfusion showed a similar pattern to [18F]FDG metabolism, with high inter-tracer regional correlations. In summary, we conducted the first in vivo PET imaging of synaptic density and metabolism in the same AD participants and reported a concordant reduction in medial temporal regions but a discordant reduction in neocortical regions.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Fluorodesoxiglucosa F18/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Alzheimers Res Ther ; 13(1): 11, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402201

RESUMEN

BACKGROUND: Attempts to associate amyloid-ß (Aß) pathogenesis with synaptic loss in Alzheimer's disease (AD) have thus far been limited to small numbers of postmortem studies. Aß plaque burden is not well-correlated with indices of clinical severity or neurodegeneration-at least in the dementia stage-as deposition of Aß reaches a ceiling. In this study, we examined in vivo the association between fibrillar Aß deposition and synaptic density in early AD using positron emission tomography (PET). We hypothesized that global Aß deposition would be more strongly inversely associated with hippocampal synaptic density in participants with amnestic mild cognitive impairment (aMCI; a stage of continued Aß accumulation) compared to those with dementia (a stage of relative Aß plateau). METHODS: We measured SV2A binding ([11C]UCB-J) and Aß deposition ([11C]PiB) in 14 participants with aMCI due to AD and 24 participants with mild AD dementia. Distribution volume ratios (DVR) with a cerebellar reference region were calculated for both tracers to investigate the association between global Aß deposition and SV2A binding in hippocampus. Exploratory analyses examined correlations between both global and regional Aß deposition and SV2A binding across a broad range of brain regions using both ROI- and surface-based approaches. RESULTS: We observed a significant inverse association between global Aß deposition and hippocampal SV2A binding in participants with aMCI (r = - 0.55, P = 0.04), but not mild dementia (r = 0.05, P = 0.82; difference statistically significant by Fisher z = - 1.80, P = 0.04). Exploratory analyses across other ROIs and whole brain analyses demonstrated no broad or consistent associations between global Aß deposition and regional SV2A binding in either diagnostic group. ROI-based analyses of the association between regional Aß deposition and SV2A binding also revealed no consistent pattern but suggested a "paradoxical" positive association between local Aß deposition and SV2A binding in the hippocampus. CONCLUSIONS: Our findings lend support to a model in which fibrillar Aß is still accumulating in the early stages of clinical disease but approaching a relative plateau, a point at which Aß may uncouple from neurodegenerative processes including synaptic loss. Future research should investigate the relationship between Aß deposition and synaptic loss in larger cohorts beginning preclinically and followed longitudinally in conjunction with other biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones
14.
Alzheimers Dement ; 16(7): 974-982, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32400950

RESUMEN

INTRODUCTION: Synaptic loss is a robust and consistent pathology in Alzheimer's disease (AD) and the major structural correlate of cognitive impairment. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has emerged as a promising biomarker of synaptic density. METHODS: We measured SV2A binding in 34 participants with early AD and 19 cognitively normal (CN) participants using [11 C]UCB-J PET and a cerebellar reference region for calculation of the distribution volume ratio. RESULTS: We observed widespread reductions of SV2A binding in medial temporal and neocortical brain regions in early AD compared to CN participants. These reductions were largely maintained after correction for volume loss and were more extensive than decreases in gray matter volume. CONCLUSION: We were able to measure widespread synaptic loss due to AD using [11 C]UCB-J PET. Future studies will continue to evaluate the utility of SV2A PET for tracking AD progression and for monitoring potential therapies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Tomografía de Emisión de Positrones
15.
J Neurosci ; 35(30): 10659-74, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26224852

RESUMEN

The mechanisms controlling cortical dendrite initiation and targeting are poorly understood. Multiphoton imaging of developing mouse cortex reveals that apical dendrites emerge by direct transformation of the neuron's leading process during the terminal phase of neuronal migration. During this ∼110 min period, the dendritic arbor increases ∼2.5-fold in size and migration arrest occurs below the first stable branch point in the developing arbor. This dendritic outgrowth is triggered at the time of leading process contact with the marginal zone (MZ) and occurs primarily by neurite extension into the extracellular matrix of the MZ. In reeler cortices that lack the secreted glycoprotein Reelin, a subset of neurons completed migration but then retracted and reorganized their arbor in a tangential direction away from the MZ soon after migration arrest. For these reeler neurons, the tangential oriented primary neurites were longer lived than the radially oriented primary neurites, whereas the opposite was true of wild-type (WT) neurons. Application of Reelin protein to reeler cortices destabilized tangential neurites while stabilizing radial neurites and stimulating dendritic growth in the MZ. Therefore, Reelin functions as part of a polarity signaling system that links dendritogenesis in the MZ with cellular positioning and cortical lamination. SIGNIFICANCE STATEMENT: Whether the apical dendrite emerges by transformation of the leading process of the migrating neuron or emerges de novo after migration is completed is unclear. Similarly, it is not clear whether the secreted glycoprotein Reelin controls migration and dendritic growth as related or separate processes. Here, multiphoton microscopy reveals the direct transformation of the leading process into the apical dendrite. This transformation is coupled to the successful completion of migration and neuronal soma arrest occurs below the first stable branch point of the nascent dendrite. Deficiency in Reelin causes the forming dendrite to avoid its normal target area and branch aberrantly, leading to improper cellular positioning. Therefore, this study links Reelin-dependent dendritogenesis with migration arrest and cortical lamination.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Neurogénesis/fisiología , Serina Endopeptidasas/metabolismo , Animales , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Células Cultivadas , Inmunohistoquímica , Ratones , Ratones Mutantes Neurológicos , Microscopía Confocal , Proteína Reelina
16.
Mol Pharmacol ; 87(5): 825-31, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25710967

RESUMEN

p53 is a Zn(2+)-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn(2+)]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn(2+)-binding mutants by binding Zn(2+) and buffering it to a level such that Zn(2+) can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn(2+)]free by functioning as a Zn(2+) ionophore, binding Zn(2+) in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn(2+)]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2-3 minutes. These [Zn(2+)]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.


Asunto(s)
Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Ionóforos/metabolismo , Metalochaperonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Zinc/metabolismo , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Mutación/genética , Conformación Proteica , Proteína p53 Supresora de Tumor/genética
17.
J Vis Exp ; (74)2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23609059

RESUMEN

Cortical development involves complex interactions between neurons and non-neuronal elements including precursor cells, blood vessels, meninges and associated extracellular matrix. Because they provide a suitable organotypic environment, cortical slice explants are often used to investigate those interactions that control neuronal differentiation and development. Although beneficial, the slice explant model can suffer from drawbacks including aberrant cellular lamination and migration. Here we report a whole cerebral hemisphere explant system for studies of early cortical development that is easier to prepare than cortical slices and shows consistent organotypic migration and lamination. In this model system, early lamination and migration patterns proceed normally for a period of two days in vitro, including the period of preplate splitting, during which prospective cortical layer six forms. We then developed an ex utero electroporation (EUEP) approach that achieves -80% success in targeting GFP expression to neurons developing in the dorsal medial cortex. The whole hemisphere explant model makes early cortical development accessible for electroporation, pharmacological intervention and live imaging approaches. This method avoids the survival surgery required of in utero electroporation (IUEP) approaches while improving both transfection and areal targeting consistency. This method will facilitate experimental studies of neuronal proliferation, migration and differentiation.


Asunto(s)
Encéfalo/embriología , Electroporación/métodos , Animales , ADN/administración & dosificación , ADN/genética , Femenino , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Plásmidos/administración & dosificación , Plásmidos/genética , Embarazo
18.
Neural Dev ; 7: 25, 2012 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-22770513

RESUMEN

BACKGROUND: The secreted ligand Reelin is believed to regulate the translocation of prospective layer 6 (L6) neocortical neurons into the preplate, a loose layer of pioneer neurons that overlies the ventricular zone. Recent studies have also suggested that Reelin controls neuronal orientation and polarized dendritic growth during this period of early cortical development. To explicitly characterize and quantify how Reelin controls this critical aspect of neurite initiation and growth we used a new ex utero explant model of early cortical development to selectively label a subset of L6 cortical neurons for complete 3-D reconstruction. RESULTS: The total neurite arbor sizes of neurons in Reelin-deficient (reeler mutant) and Dab1-deficient (Reelin-non-responsive scrambler mutant) cortices were quantified and unexpectedly were not different than control arbor lengths (p = 0.51). For each mutant, however, arbor organization was markedly different: mutant neurons manifested more primary processes (neurites emitted directly from the soma) than wild type, and these neurites were longer and displayed less branching. Reeler and scrambler mutant neurites extended tangentially rather than radially, and the Golgi apparatus that normally invests the apical neurite was compact in both reeler and scrambler mutants. Mutant cortices also exhibited a neurite "exclusion zone" which was relatively devoid of L6 neuron neurites and extended at least 15 µm beneath the pial surface, an area corresponding to the marginal zone (MZ) in the wild type explants. The presence of an exclusion zone was also indicated in the orientation of mutant primary neurite and neuronal somata, which failed to adopt angles within ~20˚ of the radial line to the pial surface. Injection of recombinant Reelin to reeler, but not scrambler, mutant cortices fully rescued soma orientation, Golgi organization, and dendritic projection defects within four hrs. CONCLUSIONS: These findings indicate Reelin promotes directional dendritic growth into the MZ, an otherwise exclusionary zone for L6 neurites.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Neocórtex/anomalías , Neocórtex/citología , Proteínas del Tejido Nervioso/genética , Neuritas/metabolismo , Neuronas/metabolismo , Serina Endopeptidasas/genética , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/farmacología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/farmacología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Embarazo , Proteína Reelina , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...