Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 73(1): 382-399, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34487166

RESUMEN

A 35 kDa monomeric purple acid phosphatase (APase) was purified from cell wall extracts of Pi starved (-Pi) Arabidopsis thaliana suspension cells and identified as AtPAP17 (At3g17790) by mass spectrometry and N-terminal microsequencing. AtPAP17 was de novo synthesized and dual-localized to the secretome and/or intracellular fraction of -Pi or salt-stressed plants, or senescing leaves. Transiently expressed AtPAP17-green fluorescent protein localized to lytic vacuoles of the Arabidopsis suspension cells. No significant biochemical or phenotypical changes associated with AtPAP17 loss of function were observed in an atpap17 mutant during Pi deprivation, leaf senescence, or salinity stress. Nevertheless, AtPAP17 is hypothesized to contribute to Pi metabolism owing to its marked up-regulation during Pi starvation and leaf senescence, broad APase substrate selectivity and pH activity profile, and rapid repression and turnover following Pi resupply to -Pi plants. While AtPAP17 also catalyzed the peroxidation of luminol, which was optimal at pH 9.2, it exhibited a low Vmax and affinity for hydrogen peroxide relative to horseradish peroxidase. These results, coupled with absence of a phenotype in the salt-stressed or -Pi atpap17 mutant, do not support proposals that the peroxidase activity of AtPAP17 contributes to the detoxification of reactive oxygen species during stresses that trigger AtPAP17 up-regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/metabolismo , Estrés Oxidativo , Fosfatos/metabolismo , Senescencia de la Planta , Secretoma
2.
Plant Cell Environ ; 42(4): 1139-1157, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30156702

RESUMEN

The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn365 and Asn422 were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850). MS revealed that AtGAL1 was bisphosphorylated at Tyr38 and Thr39 and glycosylated at four conserved Asn residues. When AtGAL was incubated in the presence of a thiol-reducing reagent prior to immunoblotting, its cross-reactivity with anti-AtGAL1-IgG was markedly attenuated (consistent with three predicted disulfide bonds in AtGAL1's apple domain). Secreted AtGAL1 polypeptides were upregulated to a far greater extent than AtGAL1 transcripts during Pi deprivation, indicating posttranscriptional control of AtGAL1 expression. Growth of a -Pi atgal1 mutant was unaffected, possibly due to compensation by AtGAL1's closest paralog, AtGAL2 (At1g78860). Nevertheless, AtGAL1's induction by numerous stresses combined with the broad distribution of AtGAL1-like lectins in diverse species implies an important function for AtGAL1 orthologs within the plant kingdom. We hypothesize that binding of AtPAP26-S2's high-mannose glycans by AtGAL1 enhances AtPAP26 function to facilitate Pi-scavenging by -Pi Arabidopsis.


Asunto(s)
Fosfatasa Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactoquinasa/metabolismo , Fosfatos/deficiencia , Fosfatasa Ácida/aislamiento & purificación , Proteínas de Arabidopsis/aislamiento & purificación , Células Cultivadas , Cromatografía en Gel , Disacáridos , Galactoquinasa/aislamiento & purificación , Glucuronatos , Fosfatos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...