Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887870

RESUMEN

Cardiac catheter ablation (CCA) is a common method used to correct cardiac arrhythmia. Pulsed Field Ablation (PFA) is a recently-adapted CCA technology whose ablation is dependent on electrode and waveform parameters (factors). In this work, the use of the Design of Experiments (DoE) methodology is investigated for the design and optimization of a PFA device. The effects of the four factors (input voltage, electrode spacing, electrode width, and on-time) and their interactions are analyzed. An empirical model is formed to predict and optimize the ablation size responses. Based on the ranges tested, the significant factors were the input voltage, the electrode spacing, and the on time, which is in line with the literature. Two-factor interactions were found to be significant and need to be considered in the model. The resulting empirical model was found to predict ablation sizes with less than 2.1% error in the measured area and was used for optimization. The findings and the strong predictive model developed highlight that the DoE approach can be used to help determine PFA device design, to optimize for certain ablation zone sizes, and to help inform device design to tackle specific cardiac arrhythmias.

2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236269

RESUMEN

The electrical properties of many biological tissues are freely available from the INRC and the IT'IS databases. However, particularly in lower frequency ranges, few studies have investigated the optimal measurement protocol or the key confounders that need to be controlled, monitored, and reported. However, preliminary work suggests that the contact force of the measurement probe on the tissue sample can affect the measurements. The aim of this paper is to investigate the conductivity change due to the probe contact force in detail. Twenty ex vivo bovine heart samples are used, and conductivity measurements are taken in the Left Atrial Appendage, a common target for medical device developments. The conductivity measurements reported in this work (between 0.14 S/m and 0.24 S/m) align with the literature. The average conductivity is observed to change by -21% as the contact force increases from 2 N to 10 N. In contrast, in conditions where the fluid concentration in the measurement area is expected to be lower, very small changes are observed (less than 2.5%). These results suggest that the LAA conductivity is affected by the contact force due to the fluid concentration in the tissue. This work suggests that contact force should be controlled for in all future experiments.


Asunto(s)
Apéndice Atrial , Animales , Bovinos , Conductividad Eléctrica , Fenómenos Mecánicos
3.
J Cardiovasc Dev Dis ; 9(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36005404

RESUMEN

Cardiac ablation with irreversible electroporation (IRE) is quickly being established as a modality of choice for atrial fibrillation treatment. While it has not yet been optimised, IRE has the potential to significantly limit collateral damage and improve cell-specific targeting associated with other energy sources. However, more tissue and cell-specific evidence is required to demonstrate the selective threshold parameters for human cells. The aim here is to determine the optimal ablation threshold parameters related to lesion size for human cardiomyocytes in 2D culture. Conventional biphasic pulses of different field strengths and on-times were delivered in a monolayer culture system of human AC16 cardiomyocytes. The dynamics of cell death and lesion dimensions were examined at different time points. Human cardiomyocytes are susceptible to significant electroporation and cell death at a field strength of 750 V/cm or higher with 100 µs pulses. Increasing the IRE on-time from 3 ms to 60 ms reduces the effective field threshold to 250 V/cm. Using very short pulses of 2 µs and 5 µs also causes significant cell death, but only at fields higher than 1000 V/cm. A longer on-time results in more cell death and induced greater lesion area in 2D models. In addition, different forms of cell death are predicted based on the evolution of cell death over time. This study presents important findings on the ability of different IRE parameters to induce human cardiomyocyte cell death. Lesion size can be tuned by appropriate choice of IRE parameters and cardiomyocytes display an upregulation of delayed cell death 24 h after electroporation, which is an important consideration for clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA