Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 124(9): 766-780, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32883428

RESUMEN

Fungi of the genus Paracoccidioides are the etiological agents of Paracoccidioidomycosis (PCM), the most prevalent mycosis in Latin America. Paracoccidioidomycosis infection is acquired by inhalation of Paracoccidioides conidia, which have first contact with the lungs and can subsequently spread to other organs/tissues. Until now, there have been no proteomic studies focusing on this infectious particle of Paracoccidioides. In order to identify the Paracoccidioides lutzii conidia proteome, conidia were produced and purified. Proteins were characterized by use of the nanoUPLC-MSE approach. The strategy allowed us to identify a total of 242 proteins in P. lutzii conidia. In the conidia proteome, proteins were classified in functional categories such as protein synthesis, energy production, metabolism, cellular defense/virulence processes, as well as other processes that can be important for conidia survival. Through this analysis, a pool of ribosomal proteins was identified, which may be important for the initial processes of dimorphic transition. In addition, molecules related to energetic and metabolic processes were identified, suggesting a possible basal metabolism during this form of resistance of the fungus. In addition, adhesins and virulence factors were identified in the P. lutzii conidia proteome. Our results demonstrate the potential role that these molecules can play during early cell-host interaction processes, as well as the way in which these molecules are involved in environmental survival during this form of propagation.


Asunto(s)
Paracoccidioides , Proteoma , Esporas Fúngicas , Paracoccidioides/metabolismo , Esporas Fúngicas/metabolismo
2.
Microb Pathog ; 149: 104281, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32585293

RESUMEN

Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.


Asunto(s)
Represión Catabólica , Paracoccidioides , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Paracoccidioides/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...