Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 574(7778): 359-364, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31619788

RESUMEN

The mechanisms that extend lifespan in humans are poorly understood. Here we show that extended longevity in humans is associated with a distinct transcriptome signature in the cerebral cortex that is characterized by downregulation of genes related to neural excitation and synaptic function. In Caenorhabditis elegans, neural excitation increases with age and inhibition of excitation globally, or in glutamatergic or cholinergic neurons, increases longevity. Furthermore, longevity is dynamically regulated by the excitatory-inhibitory balance of neural circuits. The transcription factor REST is upregulated in humans with extended longevity and represses excitation-related genes. Notably, REST-deficient mice exhibit increased cortical activity and neuronal excitability during ageing. Similarly, loss-of-function mutations in the C. elegans REST orthologue genes spr-3 and spr-4 elevate neural excitation and reduce the lifespan of long-lived daf-2 mutants. In wild-type worms, overexpression of spr-4 suppresses excitation and extends lifespan. REST, SPR-3, SPR-4 and reduced excitation activate the longevity-associated transcription factors FOXO1 and DAF-16 in mammals and worms, respectively. These findings reveal a conserved mechanism of ageing that is mediated by neural circuit activity and regulated by REST.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Longevidad , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Envejecimiento , Animales , Encéfalo/citología , Encéfalo/metabolismo , Caenorhabditis elegans , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo
2.
PLoS Genet ; 14(10): e1007682, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30296255

RESUMEN

Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neuronas Colinérgicas/patología , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sistemas CRISPR-Cas , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Frecuencia de los Genes , Técnicas de Sustitución del Gen , Ácido Glutámico/metabolismo , Humanos , Mutación con Pérdida de Función , Neuronas Motoras/metabolismo
3.
G3 (Bethesda) ; 8(8): 2825-2832, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29950427

RESUMEN

The role of Notch signaling in cell-fate decisions has been studied extensively; however, this pathway is also active in adult tissues, including the nervous system. Notch signaling modulates a wide range of behaviors and processes of the nervous system in the nematode Caenorhabditis elegans, but there is no evidence for Notch signaling directly altering synaptic strength. Here, we demonstrate Notch-mediated regulation of synaptic activity at the C. elegans neuromuscular junction (NMJ). For this, we used aldicarb, an inhibitor of the enzyme acetylcholinesterase, and assessed paralysis rates of animals with altered Notch signaling. Notch receptors LIN-12 and GLP-1 are required for normal NMJ function; they regulate NMJ activity in an opposing fashion. Complete loss of LIN-12 skews the excitation/inhibition balance at the NMJ toward increased activity, whereas partial loss of GLP-1 has the opposite effect. Specific Notch ligands and co-ligands are also required for proper NMJ function. The role of LIN-12 is independent of cell-fate decisions; manipulation of LIN-12 signaling through RNAi knockdown or overexpression of the co-ligand OSM-11 after development alters NMJ activity. We demonstrate that LIN-12 modulates GABA signaling in this paradigm, as loss of GABA signaling suppresses LIN-12 gain-of-function defects. Further analysis, in vivo and in silico, suggests that LIN-12 may modulate transcription of the GABAB receptor GBB-2 Our findings confirm a non-developmental role for the LIN-12/Notch receptor in regulating synaptic signaling and identify the GABAB receptor GBB-2 as a potential Notch transcriptional target in the C. elegans nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Unión Neuromuscular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Aldicarb/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Inhibidores de la Colinesterasa/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Neuromuscular/efectos de los fármacos , Receptores Notch/genética , Transducción de Señal/efectos de los fármacos
4.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463115

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , MicroARNs/metabolismo , Atrofia Muscular Espinal/fisiopatología , Receptor Muscarínico M2/análisis , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , ARN Helicasas DEAD-box/metabolismo , Modelos Animales de Enfermedad
5.
Proc Natl Acad Sci U S A ; 113(30): E4377-86, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402754

RESUMEN

Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Endocitosis/genética , Transducción de Señal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Interferencia de ARN , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
6.
PLoS One ; 5(12): e14402, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21203506

RESUMEN

Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL.


Asunto(s)
Axones/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/metabolismo , Tioléster Hidrolasas/genética , Animales , Linaje de la Célula , Sistema Nervioso Central/embriología , Biología Evolutiva/métodos , Modelos Animales de Enfermedad , Humanos , Microscopía Fluorescente/métodos , Modelos Biológicos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA