Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755840

RESUMEN

Similarly to sperm, where individuals self-organize in space while also striving for coherence in their tail swinging, several natural and engineered systems exhibit the emergence of swarming and synchronization. The arising and interplay of these phenomena have been captured by collectives of hypothetical particles named swarmalators, each possessing a position and a phase whose dynamics are affected reciprocally and also by the space-phase states of their neighbors. In this work, we introduce a solvable model of swarmalators able to move in two-dimensional spaces. We show that several static and active collective states can emerge and derive necessary conditions for each to show up as the model parameters are varied. These conditions elucidate, in some cases, the displaying of multistability among states. Notably, in the active regime, the system exhibits hyperchaos, maintaining spatial correlation under certain conditions and breaking it under others on what we interpret as a dimensionality transition.

2.
Sci Rep ; 13(1): 14064, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640718

RESUMEN

Human mobility is a key driver of infectious disease spread. Recent literature has uncovered a clear pattern underlying the complexity of human mobility in cities: [Formula: see text], the product of distance traveled r and frequency of return f per user to a given location, is invariant across space. This paper asks whether the invariant [Formula: see text] also serves as a driver for epidemic spread, so that the risk associated with human movement can be modeled by a unifying variable [Formula: see text]. We use two large-scale datasets of individual human mobility to show that there is in fact a simple relation between r and f and both speed and spatial dispersion of disease spread. This discovery could assist in modeling spread of disease and inform travel policies in future epidemics-based not only on travel distance r but also on frequency of return f.


Asunto(s)
Epidemias , Humanos , Ciudades , Movimiento , Políticas , Viaje
3.
Bull Math Biol ; 84(3): 36, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099660

RESUMEN

Seasonal influenza presents an ongoing challenge to public health. The rapid evolution of the flu virus necessitates annual vaccination campaigns, but the decision to get vaccinated or not in a given year is largely voluntary, at least in the USA, and many people decide against it. In some early attempts to model these yearly flu vaccine decisions, it was often assumed that individuals behave rationally, and do so with perfect information-assumptions that allowed the techniques of classical economics and game theory to be applied. However, these assumptions are not fully supported by the emerging empirical evidence about human decision-making behavior in this context. We develop a simple model of coupled disease spread and vaccination dynamics that instead incorporates experimental observations from social psychology to model annual vaccine decision-making more realistically. We investigate population-level effects of these new decision-making assumptions, with the goal of understanding whether the population can self-organize into a state of herd immunity, and if so, under what conditions. Our model agrees with the established results while also revealing more subtle population-level behavior, including biennial oscillations about the herd immunity threshold.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/psicología , Conceptos Matemáticos , Modelos Biológicos , Estaciones del Año , Vacunación
4.
Proc Natl Acad Sci U S A ; 116(26): 12752-12757, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186354

RESUMEN

Sensors can measure air quality, traffic congestion, and other aspects of urban environments. The fine-grained diagnostic information they provide could help urban managers to monitor a city's health. Recently, a "drive-by" paradigm has been proposed in which sensors are deployed on third-party vehicles, enabling wide coverage at low cost. Research on drive-by sensing has mostly focused on sensor engineering, but a key question remains unexplored: How many vehicles would be required to adequately scan a city? Here, we address this question by analyzing the sensing power of a taxi fleet. Taxis, being numerous in cities, are natural hosts for the sensors. Using a ball-in-bin model in tandem with a simple model of taxi movements, we analytically determine the fraction of a city's street network sensed by a fleet of taxis during a day. Our results agree with taxi data obtained from nine major cities and reveal that a remarkably small number of taxis can scan a large number of streets. This finding appears to be universal, indicating its applicability to cities beyond those analyzed here. Moreover, because taxis' motion combines randomness and regularity (passengers' destinations being random, but the routes to them being deterministic), the spreading properties of taxi fleets are unusual; in stark contrast to random walks, the stationary densities of our taxi model obey Zipf's law, consistent with empirical taxi data. Our results have direct utility for town councilors, smart-city designers, and other urban decision makers.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Vehículos a Motor , Ciudades , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/normas
5.
Phys Rev E ; 98(2-1): 022203, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253584

RESUMEN

Synchronization is a universal phenomenon, occurring in systems as disparate as Japanese tree frogs and Josephson junctions. Typically, the elements of synchronizing systems adjust the phases of their oscillations, but not their positions in space. The reverse scenario is found in swarming systems, such as schools of fish or flocks of birds; now the elements adjust their positions in space, but without (noticeably) changing their internal states. Systems capable of both swarming and synchronizing, dubbed swarmalators, have recently been proposed, and analyzed in the continuum limit. Here, we extend this work by studying finite populations of swarmalators, whose phase similarity affects both their spatial attraction and repulsion. We find ring states, and compute criteria for their existence and stability. Larger populations can form annular distributions, whose density we calculate explicitly. These states may be observable in groups of Japanese tree frogs, ferromagnetic colloids, and other systems with an interplay between swarming and synchronization.

6.
Nat Commun ; 8(1): 1504, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138413

RESUMEN

Synchronization occurs in many natural and technological systems, from cardiac pacemaker cells to coupled lasers. In the synchronized state, the individual cells or lasers coordinate the timing of their oscillations, but they do not move through space. A complementary form of self-organization occurs among swarming insects, flocking birds, or schooling fish; now the individuals move through space, but without conspicuously altering their internal states. Here we explore systems in which both synchronization and swarming occur together. Specifically, we consider oscillators whose phase dynamics and spatial dynamics are coupled. We call them swarmalators, to highlight their dual character. A case study of a generalized Kuramoto model predicts five collective states as possible long-term modes of organization. These states may be observable in groups of sperm, Japanese tree frogs, colloidal suspensions of magnetic particles, and other biological and physical systems in which self-assembly and synchronization interact.

7.
Chaos ; 26(10): 103105, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27802683

RESUMEN

We consider a mean-field model of coupled phase oscillators with quenched disorder in the natural frequencies and coupling strengths. A fraction p of oscillators are positively coupled, attracting all others, while the remaining fraction 1-p are negatively coupled, repelling all others. The frequencies and couplings are deterministically chosen in a manner which correlates them, thereby correlating the two types of disorder in the model. We first explore the effect of this correlation on the system's phase coherence. We find that there is a critical width γc in the frequency distribution below which the system spontaneously synchronizes. Moreover, this γc is independent of p. Hence, our model and the traditional Kuramoto model (recovered when p = 1) have the same critical width γc. We next explore the critical behavior of the system by examining the finite-size scaling and the dynamic fluctuation of the traditional order parameter. We find that the model belongs to the same universality class as the Kuramoto model with deterministically (not randomly) chosen natural frequencies for the case of p < 1.

8.
Phys Rev E ; 93(6): 062203, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27415251

RESUMEN

We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

9.
Phys Rev E ; 93(3): 032203, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078340

RESUMEN

We consider the transient behavior of globally coupled systems of identical pulse-coupled oscillators. Synchrony develops through an aggregation phenomenon, with clusters of synchronized oscillators forming and growing larger in time. Previous work derived expressions for these time dependent clusters, when each oscillator obeyed a linear charging curve. We generalize these results to cases where the charging curves have nonlinearities.

10.
Phys Rev E ; 93(2): 022219, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986343

RESUMEN

We consider a mean-field model of coupled phase oscillators with quenched disorder in the coupling strengths and natural frequencies. When these two kinds of disorder are uncorrelated (and when the positive and negative couplings are equal in number and strength), it is known that phase coherence cannot occur and synchronization is absent. Here we explore the effects of correlating the disorder. Specifically, we assume that any given oscillator either attracts or repels all the others, and that the sign of the interaction is deterministically correlated with the given oscillator's natural frequency. For symmetrically correlated disorder with zero mean, we find that the system spontaneously synchronizes, once the width of the frequency distribution falls below a critical value. For asymmetrically correlated disorder, the model displays coherent traveling waves: the complex order parameter becomes nonzero and rotates with constant frequency different from the system's mean natural frequency. Thus, in both cases, correlated disorder can trigger phase coherence.


Asunto(s)
Dinámicas no Lineales
11.
Phys Rev Lett ; 115(6): 064101, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26296117

RESUMEN

We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.


Asunto(s)
Modelos Teóricos , Periodicidad , Animales , Relojes Biológicos , Análisis por Conglomerados , Luciérnagas , Cinética , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA