Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(1): e0187322, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598481

RESUMEN

Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.


Asunto(s)
Enfermedades de las Plantas , Xylella , Productos Agrícolas , Metilación de ADN , Transferencia de Gen Horizontal , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/patogenicidad
3.
Phytopathology ; 110(12): 2010-2013, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32613911

RESUMEN

Curtobacterium flaccumfaciens pv. flaccumfaciens is the causal agent of bacterial wilt of common bean (Phaseolus vulgaris), a disease that can reduce yields of this economically important crop worldwide. Current genomics resources for this bacterial pathogen are limited. Therefore, long-read sequencing was used to determine the complete genome sequence of a pathogenic C. flaccumfaciens pv. flaccumfaciens strain isolated from common bean leaves showing irregular necrotic lesions with yellow borders collected in a commercial field in Turkey in 2015.


Asunto(s)
Actinomycetales , Phaseolus , Actinobacteria , Enfermedades de las Plantas , Turquía
4.
Phytopathology ; 110(11): 1759-1762, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32539638

RESUMEN

Xylella fastidiosa is a xylem-limited bacterial plant pathogen that causes disease on numerous hosts. Additionally, X. fastidiosa asymptomatically colonizes a wide range of plant species. X. fastidiosa subsp. multiplex has been detected in olive (Olea europaea) trees grown in California, U.S.A., as well as in Europe. Strains of X. fastidiosa subsp. multiplex isolated from California olive trees are not known to cause disease on olive, although some can induce leaf-scorch symptoms on almond (Prunus dulcis). No genome assemblies currently exist for olive-associated X. fastidiosa subsp. multiplex strains; therefore, a hybrid assembly method was used to generate complete genome sequences for three X. fastidiosa subsp. multiplex strains (Fillmore, LM10, and RH1) isolated from olive trees grown in Ventura and Los Angeles counties of California.


Asunto(s)
Olea , Xylella , California , Europa (Continente) , Enfermedades de las Plantas , Xylella/genética
5.
Plant Dis ; 104(1): 154-160, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31697223

RESUMEN

Bacterial leaf scorch disease caused by Xylella fastidiosa occurs in southern highbush blueberry varieties in the southeastern United States. Susceptibility to X. fastidiosa varies by blueberry cultivar, and these interactions are often strain-specific. Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease in grapevines, and it has been problematic in the San Joaquin Valley of California since the introduction of the glassy-winged sharpshooter (Homalodisca vitripennis). The glassy-winged sharpshooter is known to feed on blueberry, a crop that is expanding in the San Joaquin Valley. Currently, little is known about the potential for the spread of X. fastidiosa between grape and blueberry in this region. The ability of a Pierce's disease strain of X. fastidiosa from the San Joaquin Valley to cause disease in southern highbush blueberry and the potential for the glassy-winged sharpshooter to transmit X. fastidiosa between blueberry and grapevine were investigated. Experimental inoculations showed that the X. fastidiosa subsp. fastidiosa strain Bakersfield-1 can cause disease in blueberry cv. Emerald, and that the glassy-winged sharpshooter can acquire X. fastidiosa from artificially inoculated blueberry plants under laboratory conditions. Understanding the possibility for X. fastidiosa strains from the San Joaquin Valley to infect multiple crops grown in proximity is important for area-wide pest and disease management.


Asunto(s)
Arándanos Azules (Planta) , Hemípteros , Xylella , Animales , Arándanos Azules (Planta)/microbiología , California , Hemípteros/microbiología , Sudeste de Estados Unidos , Xylella/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA