Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Cell Host Microbe ; 26(5): 650-665.e4, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31726029

RESUMEN

Antibiotics alter microbiota composition and increase infection susceptibility. However, the generalizable effects of antibiotics on and the contribution of environmental variables to gut commensals remain unclear. To address this, we tracked microbiota dynamics with high temporal and taxonomic resolution during antibiotic treatment in a controlled murine system by isolating variables such as diet, treatment history, and housing co-inhabitants. Human microbiotas were remarkably resilient and recovered during antibiotic treatment, with transient dominance of resistant Bacteroides and taxa-asymmetric diversity reduction. In certain cases, in vitro sensitivities were not predictive of in vivo responses, underscoring the significance of host and community context. A fiber-deficient diet exacerbated microbiota collapse and delayed recovery. Species replacement through cross housing after ciprofloxacin treatment established resilience to a second treatment. Single housing drastically disrupted recovery, highlighting the importance of environmental reservoirs. Our findings highlight deterministic microbiota adaptations to perturbations and the translational potential for modulating diet, sanitation, and microbiota composition during antibiotics.


Asunto(s)
Antibacterianos/farmacología , Carga Bacteriana/efectos de los fármacos , Bacteroides/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Animales , Bacteroides/clasificación , Bacteroides/aislamiento & purificación , Biodiversidad , Ciprofloxacina/farmacología , Dieta , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Rifaximina/farmacología , Estreptomicina/farmacología
3.
Elife ; 62017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28873053

RESUMEN

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator-prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Neuronas/fisiología , Streptomyces/patogenicidad , Adaptación Fisiológica , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/microbiología , Quimiotaxis , Neuronas/citología , Neuronas/microbiología , Filogenia , Transducción de Señal
4.
J Med Chem ; 58(3): 1298-306, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25597392

RESUMEN

The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Amidas/síntesis química , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/química , Piocianina/química , Piridinas/síntesis química , Piridinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
5.
Proc Natl Acad Sci U S A ; 110(44): 17981-6, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24143808

RESUMEN

Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/fisiología , Transactivadores/antagonistas & inhibidores , Animales , Caenorhabditis elegans , Línea Celular , Escherichia coli , Humanos , Lactonas/química , Lactonas/farmacología , Análisis por Micromatrices , Estructura Molecular , Pseudomonas aeruginosa/fisiología , Piocianina , Percepción de Quorum/efectos de los fármacos , Mucosa Respiratoria/fisiología , Compuestos de Azufre/química , Compuestos de Azufre/farmacología , Virulencia
6.
Mol Cell ; 42(2): 199-209, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21504831

RESUMEN

Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by ∼60 Å, twice the ∼30 Å separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Lactonas/farmacología , Percepción de Quorum/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Antibacterianos/química , Sitios de Unión , Chromobacterium/genética , Chromobacterium/crecimiento & desarrollo , Chromobacterium/metabolismo , Chromobacterium/patogenicidad , Cristalografía por Rayos X , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Lactonas/química , Lactonas/metabolismo , Ligandos , Modelos Moleculares , Estructura Molecular , Mutación , Conformación Proteica , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Virulencia
7.
Mol Cell ; 35(2): 143-53, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647512

RESUMEN

Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Chromobacterium/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Chromobacterium/patogenicidad , Chromobacterium/fisiología , Escherichia coli/genética , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA