Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Cyst Fibros ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734509

RESUMEN

BACKGROUND: Cystic fibrosis (CF) is caused by deleterious variants in each CFTR gene. We investigated the utility of whole-gene CFTR sequencing when fewer than two pathogenic or likely pathogenic (P/LP) variants were detected by conventional testing (sequencing of exons and flanking introns) of CFTR. METHODS: Individuals with features of CF and a CF-diagnostic sweat chloride concentration with zero or one P/LP variants identified by conventional testing enrolled in the CF Mutation Analysis Program (MAP) underwent whole-gene CFTR sequencing. Replication was performed on individuals enrolled in the CF Genome Project (CFGP), followed by phenotype review and interrogation of other genes. RESULTS: Whole-gene sequencing identified a second P/LP variant in 20/43 MAP enrollees (47 %) and 10/22 CFGP enrollees (45 %) who had one P/LP variant after conventional testing. No P/LP variants were detected when conventional testing was negative (MAP: n = 43; CFGP: n = 13). Genome-wide analysis was unable to find an alternative etiology in CFGP participants with fewer than two P/LP CFTR variants and CF could not be confirmed in 91 % following phenotype re-review. CONCLUSIONS: Whole-gene CFTR analysis is beneficial in individuals with one previously-identified P/LP variant and a CF-diagnostic sweat chloride. Negative conventional CFTR testing indicates that the phenotype should be re-evaluated.

2.
Am J Hum Genet ; 111(5): 990-995, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38636510

RESUMEN

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.


Asunto(s)
Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Humanos , Estudios de Cohortes , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Genoma Humano , Control de Calidad , Aprendizaje Automático , Secuenciación Completa del Genoma/normas , Secuenciación Completa del Genoma/métodos
3.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562829

RESUMEN

The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.

4.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536042

RESUMEN

BACKGROUND AND AIMS: It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS: Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION: These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.

5.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370820

RESUMEN

In vitro models play a major role in studying airway physiology and disease. However, the native lung's complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.

6.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016030

RESUMEN

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Asunto(s)
Bronquiectasia , Fibrosis Quística , Humanos , Bronquiolos , Dilatación Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrosis , ARN , Mucina 5AC/genética
7.
Sci Rep ; 13(1): 9254, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286633

RESUMEN

Privacy protection is a core principle of genomic but not proteomic research. We identified independent single nucleotide polymorphism (SNP) quantitative trait loci (pQTL) from COPDGene and Jackson Heart Study (JHS), calculated continuous protein level genotype probabilities, and then applied a naïve Bayesian approach to link SomaScan 1.3K proteomes to genomes for 2812 independent subjects from COPDGene, JHS, SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) and Multi-Ethnic Study of Atherosclerosis (MESA). We correctly linked 90-95% of proteomes to their correct genome and for 95-99% we identify the 1% most likely links. The linking accuracy in subjects with African ancestry was lower (~ 60%) unless training included diverse subjects. With larger profiling (SomaScan 5K) in the Atherosclerosis Risk Communities (ARIC) correct identification was > 99% even in mixed ancestry populations. We also linked proteomes-to-proteomes and used the proteome only to determine features such as sex, ancestry, and first-degree relatives. When serial proteomes are available, the linking algorithm can be used to identify and correct mislabeled samples. This work also demonstrates the importance of including diverse populations in omics research and that large proteomic datasets (> 1000 proteins) can be accurately linked to a specific genome through pQTL knowledge and should not be considered unidentifiable.


Asunto(s)
Aterosclerosis , Proteoma , Humanos , Proteoma/genética , Teorema de Bayes , Privacidad , Estudio de Asociación del Genoma Completo , Aterosclerosis/genética , Polimorfismo de Nucleótido Simple
8.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285404

RESUMEN

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Asunto(s)
COVID-19 , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Hipoxia/metabolismo
9.
PLoS Genet ; 19(6): e1010445, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352370

RESUMEN

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.


Asunto(s)
Mucinas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Mucinas/genética , Mucinas/metabolismo , Esputo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Moco/metabolismo , Fenotipo
10.
Chronic Obstr Pulm Dis ; 10(3): 199-210, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37199731

RESUMEN

Rationale: Bronchiectasis is common among those with heavy smoking histories, but risk factors for bronchiectasis, including alpha-1 antitrypsin deficiency, and its implications for COPD severity are uncharacterized in such individuals. Objectives: To characterize the impact of bronchiectasis on COPD and explore alpha-1antitrypsin as a risk factor for bronchiectasis. Methods: SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) participants (N=914; ages 40-80 years; ≥20-pack-year smoking) had high-resolution computed tomography (CT) scans interpreted visually for bronchiectasis, based on airway dilation without fibrosis or cicatrization. We performed regression-based models of bronchiectasis with clinical outcomes and quantitative CT measures. We deeply sequenced the gene encoding -alpha-1 antitrypsin, SERPINA1, in 835 participants to test for rare variants, focusing on the PiZ genotype (Glu366Lys, rs28929474). Measurements and Main Results: We identified bronchiectasis in 365 (40%) participants, more frequently in women (45% versus 36%, p=0.0045), older participants (mean age=66[standard deviation (SD)=8.3] versus 64[SD=9.1] years, p=0.0083), and those with lower lung function (forced expiratory volume in 1 second [FEV1 ] percentage predicted=66%[SD=27] versus 77%[SD=25], p<0.0001; FEV1 to forced vital capacity [FVC] ratio=0.54[0.17] versus 0.63[SD=0.16], p<0.0001). Participants with bronchiectasis had greater emphysema (%voxels ≤-950 Hounsfield units, 11%[SD=12] versus 6.3%[SD=9], p<0.0001) and parametric response mapping functional small airways disease (26[SD=15] versus 19[SD=15], p<0.0001). Bronchiectasis was more frequent in the combined PiZZ and PiMZ genotype groups compared to those without PiZ, PiS, or other rare pathogenic variants (N=21 of 40 [52%] versus N=283 of 707[40%], odds ratio [OR]=1.97; 95% confidence interval [CI]=1.002, 3.90, p=0.049), an association attributed to White individuals (OR=1.98; 95%CI = 0.9956, 3.9; p=0.051). Conclusions: Bronchiectasis was common in those with heavy smoking histories and was associated with detrimental clinical and radiographic outcomes. Our findings support alpha-1antitrypsin guideline recommendations to screen for alpha-1 antitrypsin deficiency in an appropriate bronchiectasis subgroup with a significant smoking history.

11.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217548

RESUMEN

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Fumar/efectos adversos , Volumen Espiratorio Forzado , Lavado Broncoalveolar , Biomarcadores
12.
Clin Immunol ; 250: 109324, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030524

RESUMEN

While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether frequent exacerbators have specific defects in antibody production/function. We hypothesized that reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in the SPIROMICS cohort. We measured total pneumococcal IgG in n = 764 previously vaccinated participants with COPD. In a propensity-matched subset of n = 200 with vaccination within five years (n = 50 without exacerbations in the previous year; n = 75 with one, n = 75 with ≥2), we measured pneumococcal IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes. Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be useful biomarkers for immune dysfunction in COPD.


Asunto(s)
Infecciones Neumocócicas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inmunoglobulina G , Streptococcus pneumoniae , Vacunación , Pruebas Inmunológicas , Anticuerpos Antibacterianos , Vacunas Neumococicas
13.
Am J Respir Crit Care Med ; 207(10): 1324-1333, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921087

RESUMEN

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Estudio de Asociación del Genoma Completo/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Gravedad del Paciente , Pulmón , Proteínas Asociadas a Microtúbulos/genética
14.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L32-L37, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342131

RESUMEN

Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.


Asunto(s)
Nicotina , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Nicotina/metabolismo , Cotinina/análisis , Cotinina/metabolismo , Fumadores , Sistema Respiratorio/metabolismo , Biomarcadores/análisis
15.
Chest ; 163(3): 515-528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36343688

RESUMEN

BACKGROUND: The Global Initiative for Chronic Obstructive Lung Disease (GOLD) considers blood eosinophil counts < 100 cells/µL (BEC≤100) in people with COPD to predict poor inhaled corticosteroid (ICS) responsiveness. However, the BEC≤100 phenotype is inadequately characterized, especially in advanced COPD. RESEARCH QUESTION: Are there differences between GOLD group D patients with high BEC and those with low BEC regarding baseline characteristics and longitudinal outcomes? STUDY DESIGN AND METHODS: We used multivariable mixed models and logistic regression to contrast clinical characteristics and outcomes of BEC≤100 vs BEC > 100 (BEC100+) in all subjects with COPD (n = 1,414) and GOLD group D subjects (n = 185) not receiving ICS. RESULTS: We identified n = 485 with BEC≤100 (n = 61 GOLD group D) and n = 929 people with BEC100+ (n = 124 GOLD group D). BEC≤100 status was stable at 6 weeks and approximately 52 weeks (intraclass correlations of 0.78 and 0.71, respectively). Compared with BEC100+, BEC≤100 comprised more women, with greater current smoking, and less frequent childhood asthma. Among all analyzed participants, the two BEC-defined subsets showed similar rates of lung function decline (mean slope, BEC≤100 vs BEC100+, -50 vs -39 mL/y; P = .140), exacerbations (0.40 vs 0.36/y; P = .098), subsequent ICS initiation (2.5% vs 4.4%; P = .071), and mortality (7.8% vs 8.4%; P = .715). However, in GOLD group D, people with BEC≤100 showed higher exacerbation rates within 365 days of enrollment (0.62 vs 0.33/y; P = .002) and total follow-up (1.16 vs 0.83/y; P = .014). They also had greater lung function decline (mean slope of -68 mL/y vs -23 mL/y; P = .036) and had greater emphysema at baseline (voxels < 950 Hounsfield units at total lung capacity of 7.46% vs 4.61%; P = .029). INTERPRETATION: In non-ICS-treated GOLD group D COPD, people with BEC≤100 had more baseline emphysema, prospective exacerbations, and lung function decline. Our analysis has identified a particularly vulnerable subpopulation of people with COPD, suggesting the need for studies focused specifically on their therapeutic treatment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS: gov.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Femenino , Humanos , Eosinófilos , Estudios Prospectivos , Corticoesteroides/uso terapéutico , Enfisema Pulmonar/tratamiento farmacológico , Progresión de la Enfermedad , Administración por Inhalación
16.
Am J Respir Crit Care Med ; 206(11): 1336-1352, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816430

RESUMEN

Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/ß) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.


Asunto(s)
COVID-19 , Humanos , Prevalencia , SARS-CoV-2 , Mucina 5B/genética , Mucina 5AC/genética , Moco/metabolismo , Pulmón/metabolismo , Receptores ErbB , ARN/metabolismo
17.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35857635

RESUMEN

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


Asunto(s)
COVID-19 , Animales , Antivirales , COVID-19/complicaciones , Fibrosis , Humanos , Pulmón/patología , Ratones , SARS-CoV-2
18.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
19.
Sci Adv ; 8(13): eabm9718, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35363522

RESUMEN

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism. Studies of the anion secretion-inhibited pig airway model of CF revealed elevated SMG mucus concentrations, osmotic pressures, and SMG mucus accumulation. Human airway studies revealed hyperconcentrated CF SMG mucus with raised osmotic pressures and cohesive forces predicted to limit SMG mucus secretion/release. Using proline-rich protein 4 (PRR4) as a biomarker of SMG secretion, CF sputum proteomics analyses revealed markedly lower PRR4 levels compared to healthy and bronchiectasis controls, consistent with a failure of CF SMGs to secrete mucus onto airway surfaces. Raised mucus osmotic/cohesive forces, reflecting mucus hyperconcentration, provide a unifying mechanism that describes disease-initiating mucus accumulation on airway surfaces and in SMGs of the CF lung.


Asunto(s)
Fibrosis Quística , Animales , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Moco/metabolismo , Sistema Respiratorio/metabolismo , Esputo/metabolismo , Porcinos
20.
Proc Natl Acad Sci U S A ; 119(16): e2119680119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35353667

RESUMEN

Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host­virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13­treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.


Asunto(s)
COVID-19 , Interleucina-13 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interleucina-13/metabolismo , Sistema Respiratorio/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...