Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 97(12): 4075-4086, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28205235

RESUMEN

BACKGROUND: In northern Australia, beef cattle grazed extensively on tropical rangelands are responsible for 5% of the nation's total greenhouse gas emissions. Methane (CH4 ) is a potent greenhouse gas and in grazing ruminants might be mitigated by selecting forages that, when consumed, produce less CH4 when fermented by rumen microbes. This study examined variability in the in vitro fermentation patterns, including CH4 production of selected tropical grasses and legumes, to identify candidates for CH4 mitigation in grazing livestock in northern Australia. RESULTS: Nutritive values and fermentation parameters varied between plant species and across seasons. Grasses with a relatively low methanogenic potential were Urochloa mosambicensis (wet summer), Bothriochloa decipiens (autumn), Sorghum plumosum (winter) and Andropogon gayanus (spring), while the legumes were Calliandra calothyrsus (wet summer and autumn), Stylosanthes scabra (winter) and Desmanthus leptophyllus (spring). There was some correlation between CH4 production and overall fermentation (volatile fatty acid concentrations) in grasses (R2 = 0.67), but not in legumes (R2 = 0.01) and there were multiple plants that had lower CH4 not associated with reduction in microbial activity. CONCLUSION: Differences in nutrient concentrations of tropical grasses and legumes may provide opportunities for productive grazing on these pastures, while offering some CH4 mitigation options in the context of northern Australian extensive beef farming systems. © 2017 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Bovinos/metabolismo , Fabaceae/metabolismo , Poaceae/metabolismo , Animales , Australia , Fabaceae/química , Metano/análisis , Metano/metabolismo , Valor Nutritivo , Poaceae/química , Carne Roja/análisis , Rumen/metabolismo
2.
Genet Sel Evol ; 44: 22, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22839739

RESUMEN

BACKGROUND: Infectious bovine keratoconjunctivitis (IBK) or 'pinkeye' is an economically important ocular disease that significantly impacts animal performance. Genetic parameters for IBK infection and its genetic and phenotypic correlations with cattle tick counts, number of helminth (unspecified species) eggs per gram of faeces and growth traits in Australian tropically adapted Bos taurus cattle were estimated. METHODS: Animals were clinically examined for the presence of IBK infection before and after weaning when the calves were 3 to 6 months and 15 to 18 months old, respectively and were also recorded for tick counts, helminth eggs counts as an indicator of intestinal parasites and live weights at several ages including 18 months. RESULTS: Negative genetic correlations were estimated between IBK incidence and weight traits for animals in pre-weaning and post-weaning datasets. Genetic correlations among weight measurements were positive, with moderate to high values. Genetic correlations of IBK incidence with tick counts were positive for the pre-weaning and negative for the post-weaning datasets but negative with helminth eggs counts for the pre-weaning dataset and slightly positive for the post-weaning dataset. Genetic correlations between tick and helminth eggs counts were moderate and positive for both datasets. Phenotypic correlations of IBK incidence with helminth eggs per gram of faeces were moderate and positive for both datasets, but were close to zero for both datasets with tick counts. CONCLUSIONS: Our results suggest that genetic selection against IBK incidence in tropical cattle is feasible and that calves genetically prone to acquire IBK infection could also be genetically prone to have a slower growth. The positive genetic correlations among weight traits and between tick and helminth eggs counts suggest that they are controlled by common genes (with pleiotropic effects). Genetic correlations between IBK incidence and tick and helminth egg counts were moderate and opposite between pre-weaning and post-weaning datasets, suggesting that the environmental and (or) maternal effects differ between these two growth phases. This preliminary study provides estimated genetic parameters for IBK incidence, which could be used to design selection and breeding programs for tropical adaptation in beef cattle.


Asunto(s)
Peso Corporal/genética , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/parasitología , Queratoconjuntivitis/veterinaria , Análisis de Varianza , Animales , Australia/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Estudios de Asociación Genética , Incidencia , Queratoconjuntivitis/genética , Queratoconjuntivitis/parasitología , Modelos Estadísticos , Linaje , Fenotipo , Rhipicephalus/patogenicidad , Infestaciones por Garrapatas/complicaciones , Infestaciones por Garrapatas/genética , Infestaciones por Garrapatas/veterinaria
3.
Evol Appl ; 3(5-6): 422-33, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25567936

RESUMEN

The evolutionary processes that have enabled Bos taurus cattle to establish around the globe are at the core to the future success of livestock production. Our study focuses on the history of cattle domestication including the last 60 years of B. taurus breeding programmes in both favourable and unfavourable environments and its consequences on evolution and fitness of cattle. We discuss the emergence of 'production diseases' in temperate production systems and consider the evolutionary genetics of tropical adaptation in cattle and conclude that the Senepol, N'Dama, Adaptaur and Criollo breeds, among others with similar evolutionary trajectories, would possess genes capable of improving the productivity of cattle in challenging environments. Using our own experimental evidence from northern Australia, we review the evolution of the Adaptaur cattle breed which has become resistant to cattle tick. We emphasize that the knowledge of interactions between genotype, environment and management in the livestock systems will be required to generate genotypes for efficient livestock production that are both economically and environmentally sustainable. Livestock producers in the 21st century will have less reliance on infrastructure and veterinary products to alleviate environmental stress and more on the animal's ability to achieve fitness in a given production environment.

4.
Sensors (Basel) ; 9(5): 3586-603, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22412327

RESUMEN

Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...