Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Redox Biol ; 73: 103189, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788541

RESUMEN

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.

2.
Sci Rep ; 14(1): 8094, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582781

RESUMEN

The mammalian target of rapamycin (mTOR), and specifically the mTOR complex 1 (mTORC1) is the central regulator of anabolism in skeletal muscle. Among the many functions of this kinase complex is the inhibition of the catabolic process of autophagy; however, less work has been done in investigating the role of autophagy in regulating mTORC1 signaling. Using an in vitro model to better understand the pathways involved, we activated mTORC1 by several different means (growth factors, leucine supplementation, or muscle contraction), alone or with the autophagy inhibitor NSC185058. We found that inhibiting autophagy with NSC185058 suppresses mTORC1 activity, preventing any increase in cellular protein anabolism. These decrements were the direct result of action on the mTORC1 kinase, which we demonstrate, for the first time, cannot function when autophagy is inhibited by NSC185058. Our results indicate that, far from being a matter of unidirectional action, the relationship between mTORC1 and the autophagic cascade is more nuanced, with autophagy serving as an mTORC1 input, and mTORC1 inhibition of autophagy as a form of homeostatic feedback to regulate anabolic signaling. Future studies of cellular metabolism will have to consider this fundamental intertwining of protein anabolism and catabolism, and how it ultimately serves to regulate muscle proteostasis.


Asunto(s)
Aminopiridinas , Autofagia , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Músculo Esquelético/metabolismo
3.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496648

RESUMEN

The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand potential context specificity of metformin treatment on skeletal muscle, we used a rat model (HCR/LCR) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (IMF vs SS). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.

5.
J Appl Physiol (1985) ; 134(1): 181-189, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519568

RESUMEN

Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.


Asunto(s)
Ejercicio Físico , Mitocondrias , Mitocondrias/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo
6.
World J Biol Chem ; 12(5): 70-86, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34630911

RESUMEN

The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...