Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073112

RESUMEN

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Asunto(s)
Complejo Dinactina/metabolismo , Dineínas/metabolismo , Proteína Básica de Mielina/genética , Oligodendroglía/metabolismo , ARN Mensajero/metabolismo , Animales , Animales Modificados Genéticamente , Axones/patología , Transporte Biológico , Proliferación Celular/genética , Células Cultivadas , Complejo Dinactina/genética , Dineínas/genética , Larva , Proteínas de Microfilamentos/genética , Oligodendroglía/patología , Ratas Sprague-Dawley , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
G3 (Bethesda) ; 7(10): 3415-3425, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28855284

RESUMEN

As forward genetic screens in zebrafish become more common, the number of mutants that cannot be identified by gross morphology or through transgenic approaches, such as many nervous system defects, has also increased. Screening for these difficult-to-visualize phenotypes demands techniques such as whole-mount in situ hybridization (WISH) or antibody staining, which require tissue fixation. To date, fixed tissue has not been amenable for generating libraries for whole genome sequencing (WGS). Here, we describe a method for using genomic DNA from fixed tissue and a bioinformatics suite for WGS-based mapping of zebrafish mutants. We tested our protocol using two known zebrafish mutant alleles, gpr126st49 and egr2bfh227 , both of which cause myelin defects. As further proof of concept we mapped a novel mutation, stl64, identified in a zebrafish WISH screen for myelination defects. We linked stl64 to chromosome 1 and identified a candidate nonsense mutation in the F-box and WD repeat domain containing 7 (fbxw7) gene. Importantly, stl64 mutants phenocopy previously described fbxw7vu56 mutants, and knockdown of fbxw7 in wild-type animals produced similar defects, demonstrating that stl64 disrupts fbxw7 Together, these data show that our mapping protocol can map and identify causative lesions in mutant screens that require tissue fixation for phenotypic analysis.


Asunto(s)
Secuenciación Completa del Genoma/métodos , Pez Cebra/genética , Animales , Mapeo Cromosómico , Mutación , Polimorfismo de Nucleótido Simple , Fijación del Tejido
3.
Zebrafish ; 14(3): 280-283, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28287927

RESUMEN

Research into adult zebrafish often requires fish to be of a specific size. Currently, fish must be individually measured to achieve this goal. Here, we design and utilize fish graders to quickly sort fish by width. We characterize graders individually for the length of fish they discriminate between and we also analyze graders in pairs to define the range of lengths for a retained population of fish. We note that a 1 mm increase of fish width increases fish length by 6.2-7.2 mm. We provide the schematics to print a series of eight retention widths, and note that graders of any desired retention width can easily be printed by slightly modifying our design files.


Asunto(s)
Tamaño Corporal , Impresión Tridimensional/instrumentación , Pez Cebra/anatomía & histología , Animales , Diseño de Equipo , Robótica/instrumentación , Especificidad de la Especie , Pez Cebra/fisiología
4.
Development ; 140(5): 996-1002, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23364331

RESUMEN

Adult stem cells are crucial for growth, homeostasis and repair of adult animals. The melanocyte stem cell (MSC) and melanocyte regeneration is an attractive model for studying regulation of adult stem cells. The process of melanocyte regeneration can be divided into establishment of the MSC, recruitment of the MSC to produce committed daughter cells, and the proliferation, differentiation and survival of these daughter cells. Reduction of Kit signaling results in dose-dependent reduction of melanocytes during larval regeneration. Here, we use clonal analysis techniques to develop assays to distinguish roles for these processes during zebrafish larval melanocyte regeneration. We use these clonal assays to investigate which processes are affected by the reduction in Kit signaling. We show that the regeneration defect in kita mutants is not due to defects in MSC recruitment or in the proliferation, differentiation or survival of the daughter cells, but is instead due to a defect in stem cell establishment. Our analysis suggests that the kit MSC establishment defect results from inappropriate differentiation of the MSC lineage.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/fisiología , Melanocitos/fisiología , Proteínas Proto-Oncogénicas c-kit/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Supervivencia Celular/genética , Evolución Clonal/genética , Embrión no Mamífero , Células Madre Embrionarias/metabolismo , Dosificación de Gen/fisiología , Melanocitos/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Regeneración/genética , Regeneración/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Células Madre/genética , Factor de Células Madre/metabolismo , Factor de Células Madre/fisiología , Pez Cebra/genética , Pez Cebra/fisiología
5.
Semin Cell Dev Biol ; 20(1): 117-24, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18950723

RESUMEN

Utilization of adult stem cells in regenerative therapies may require a thorough understanding of the mechanisms that establish, recruit and renew the stem cell, promote the differentiation of its daughters, or how the stem cell is repressed by its target tissue. Regeneration of melanocytes in the regenerating zebrafish caudal fin, or following larval melanocyte-specific ablation, or recruitment of new melanocytes during pigment pattern metamorphosis each provides evidence for melanocyte stem cells (MSCs) that support the melanocyte pigment pattern. We discuss the mechanisms of MSC regulation provided from analysis of normal or mutant regeneration in each of these systems, including the implications drawn from evidence that regeneration does not simply recapitulate ontogenetic development. These results suggest that analysis of melanocyte regeneration in zebrafish will provide a fine scale dissection of mechanisms establishing or regulating adult stem cells.


Asunto(s)
Células Madre Adultas/citología , Diferenciación Celular , Melanocitos/citología , Regeneración , Células Madre Adultas/metabolismo , Animales , Humanos , Melanocitos/metabolismo , Metamorfosis Biológica , Modelos Biológicos
6.
Zebrafish ; 5(4): 257-64, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19133824

RESUMEN

The simplest regeneration experiments involve the ablation of a single cell type. While methods exist to ablate the melanocytes of the larval zebrafish,(1,2) no convenient method exists to ablate melanocytes in adult zebrafish. Here, we show that the copper chelator neocuproine (NCP) causes fragmentation and disappearance of melanin in adult zebrafish melanocytes. Adult melanocytes expressing eGFP under the control of a melanocyte-specific promoter also lose eGFP fluorescence in the presence of NCP. We conclude that NCP causes melanocyte death. This death is independent of p53 and melanin, but can be suppressed by the addition of exogenous copper. NCP is ineffective at ablating larval melanocytes. This now provides a tool for addressing questions about stem cells and the maintenance of the adult pigment pattern in zebrafish.


Asunto(s)
Quelantes/farmacología , Melanocitos/efectos de los fármacos , Fenantrolinas/farmacología , Animales , Animales Modificados Genéticamente , Cobre/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Melaninas , Pigmentación de la Piel/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
7.
Dev Biol ; 296(2): 450-7, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16844108

RESUMEN

A long-standing question in developmental biology is how do growing and developing animals achieve form and then maintain it. We have revealed a critical transition in growth control during zebrafish caudal fin development, wherein a switch from allometric to isometric growth occurs. This morphological transition led us to hypothesize additional physiological changes in growth control pathways. To test this, we fasted juvenile and adult zebrafish. Juvenile fins continued allometric growth until development of the mature bi-lobed shape was completed. In contrast, the isometric growth of mature adult fins arrested within days of initiating a fast. We explored the biochemical basis of this difference in physiology between the two phases by assessing the sensitivity to rapamycin, a drug that blocks a nutrient-sensing pathway. We show that the nutrition-independent, allometric growth phase is resistant to rapamycin at 10-fold higher concentrations than are effective at arresting growth in the nutrition-dependent, isometric growth phase. We thus link a morphological transition in growth control between allometric and isometric growth mechanisms to different physiological responses to nutritional state of the animal and finally to different pharmacological responses to a drug (rapamycin) that affects the nutrition-sensing mechanism described from yeast to human.


Asunto(s)
Cola (estructura animal)/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo , Animales , Proliferación Celular/efectos de los fármacos , Lateralidad Funcional/fisiología , Mesodermo/efectos de los fármacos , Mesodermo/fisiología , Modelos Biológicos , Estado Nutricional/efectos de los fármacos , Estado Nutricional/fisiología , Sirolimus/administración & dosificación , Cola (estructura animal)/citología , Pez Cebra/fisiología
8.
Proc Natl Acad Sci U S A ; 102(47): 17053-8, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16278297

RESUMEN

DYX2 on 6p22 is the most replicated reading disability (RD) locus. By saturating a previously identified peak of association with single nucleotide polymorphism markers, we identified a large polymorphic deletion that encodes tandem repeats of putative brain-related transcription factor binding sites in intron 2 of DCDC2. Alleles of this compound repeat are in significant disequilibrium with multiple reading traits. RT-PCR data show that DCDC2 localizes to the regions of the brain where fluent reading occurs, and RNA interference studies show that down-regulation alters neuronal migration. The statistical and functional studies are complementary and are consistent with the latest clinical imaging data for RD. Thus, we propose that DCDC2 is a candidate gene for RD.


Asunto(s)
Encéfalo/fisiología , Diferenciación Celular/genética , Dislexia/genética , Predisposición Genética a la Enfermedad , Neuronas/citología , Neuronas/fisiología , Adulto , Anciano , Encéfalo/citología , Inhibición de Migración Celular , Movimiento Celular/genética , Dislexia/patología , Femenino , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA