Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Drug Discov Today ; 29(5): 103980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614160

RESUMEN

Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/ß-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.


Asunto(s)
Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Neoplasias , Proto-Oncogenes Mas , Proteínas Supresoras de Tumor , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética
2.
J Pain ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38232863

RESUMEN

Oxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN. ART26.12 binds selectively to FABP5 compared to FABP3, FABP4, and FABP7, with minimal off-target liabilities, high oral bioavailability, and a NOAEL of 1,000 mg/kg/day in rats and dogs. In an established preclinical OIPN model, acute oral dosing (25-100 mg/kg) showed a cannabinoid receptor type 1 (CB1)-dependent anti-allodynic effect lasting up to 8 hours (persisting longer than plasma exposure to ART26.12). Antagonists of cannabinoid receptor type 2 (CB2), peroxisome proliferator-activated receptor alpha, and transient receptor potential cation channel subfamily V member 1 (TRPV1) may have also been implicated. Twice daily oral dosing (25 mg/kg bis in die (BID) for 7 days) showed anti-allodynic effects in an established OIPN model without the development of tolerance. In a prevention paradigm, coadministration of ART26.12 (10 and 25 mg/kg BID for 15 days) with oxaliplatin prevented thermal hyperalgesia, mitigated mechanical allodynia, and attenuated OXA-induced weight loss. Multi-scale analyses revealed widespread lipid modulation, particularly among N-acyl amino acids in the spinal cord, including potential analgesic mediators. Additionally, ART26.12 administration led to upregulation of ion channels in the periaqueductal grey, and broad translational upregulation within the plasma proteome. These results show promise that ART26.12 is a safe and well-tolerated candidate for the treatment and prevention of OIPN through lipid modulation. PERSPECTIVE: Inhibition of fatty acid-binding protein 5 (FABP5) is a novel target for reducing pain associated with chemotherapy. ART26.12 is a safe and well-tolerated small molecule FABP5 inhibitor effective at preventing and reducing pain induced with oxaliplatin through lipid modulation and activation of cannabinoid receptors.

3.
Cannabis Cannabinoid Res ; 9(1): 421-431, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36695660

RESUMEN

Introduction: Ireland's agriculture has been shaped by Celts, Romano-British Christians, Norse-Vikings, Anglo-Normans, and subsequent migrants. Who introduced hemp (Cannabis sativa) to Hibernia? We addressed this question using historical linguistics, fossil pollen studies (FPSs), archaeological data, and written records. Methods: Data gathering utilized digital resources coupled with citation tracking. Linguistic methods separated cognates (words with shared etymological origins) from loanwords (borrowed from other languages). Cannabis pollen in FPSs was identified using the "ecological proxy" method. Archaeological reports were ranked on a "robustness" scale. Results: Words for "hemp" in Celtic languages are loanwords, not cognates. The Irish word cnáib is first attested in texts written 1060 and 1127-1134 CE. Old Breton coarcholion, corrected to coarch, is attested in a text from the 9th century. Pollen consistent with cultivated Cannabis appears in the Middle Ages, ca. 700 CE, at sites in the vicinity of monasteries. Archaeological finds (hemp seeds and fiber) date to later Norse-Viking and Anglo-Norman sites. Discussion: People of the Hallstatt Culture in Central Europe have long been considered speakers of the "Proto-Celtic" language. The lack of "hemp" cognates means a Proto-Celtic word cannot be reconstructed, which implies that Hallstatt people (with robust archaeological evidence of hemp) did not speak Proto-Celtic. Cnáib is absent in Old Irish glossaries, epics, and mythologies (600-900 CE). FPS data suggest that the onset of hemp cultivation correlated-chronologically and spatially-with the founding of Romano-British monasteries. Irish cnáib was likely borrowed from Clerical Latin canapis or canabus.


Asunto(s)
Cannabis , Irlanda , Lenguaje , Historia Medieval
4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004445

RESUMEN

Cachexia syndrome, leading to reduced skeletal muscle and fat mass, is highly prevalent in cancer patients, resulting in further negative implications for these patients. To date, there is no approved therapy for cachexia syndrome. The objective of this study was to establish an in vitro model of cancer cachexia in mature human skeletal muscle myotubes, with the intention of exploiting the cell model to assess potential cachexia therapeutics, specifically cannabinoid related drugs. Having cultured and differentiated primary human muscle myoblasts to mature myotubes, we successfully established two cancer cachexia models using conditioned media (CM) from human colon adenocarcinoma (SW480) and from non-small-cell lung carcinoma (H1299) cultured cells. The cancer-CM-induced extensive myotube degeneration, demonstrated by a significant reduction in mature myotube diameter, which progressed over the period studied. Myotube degeneration is a characteristic feature of cancer cachexia and was used in this study as an index of cachexia. Expression of cannabinoid 1 and 2 receptors (CB1R and CB2R) was confirmed in the mature human skeletal muscle myotubes. Subsequently, the effect of cannabinoid compounds on this myotube degeneration were assessed. Tetrahydrocannabinol (THC), a partial CB1R/CB2R agonist, and JWH133, a selective CB2R agonist, proved efficacious in protecting mature human myotubes from the deleterious effects of both (SW480 and H1299) cancer cachexia conditions. ART27.13, a full, peripherally selective CB1R/CB2R agonist, currently being trialled in cancer cachexia (IRAS ID 278450, REC 20/NE/0198), was also significantly protective against myotube degeneration in both (SW480 and H1299) cancer cachexia conditions. Furthermore, the addition of the CB2R antagonist AM630, but not the CB1R antagonist Rimonabant, abolished the protective effect of ART27.13. In short, we have established a convenient and robust in vitro model of cancer-induced human skeletal muscle cachexia. The data obtained using the model demonstrate the therapeutic potential of ART27.13 in cancer-induced cachexia prevention and provides evidence indicating that this effect is via CB2R, and not CB1R.

5.
Drug Discov Today ; 28(7): 103628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37230284

RESUMEN

Fatty acid binding protein 5 (FABP5, or epidermal FABP) is an intracellular chaperone of fatty acid molecules that regulates lipid metabolism and cell growth. In patient-derived tumours, FABP5 expression is increased up to tenfold, often co-expressed with other cancer-related proteins. High tumoral FABP5 expression is associated with poor prognosis. FABP5 activates transcription factors (TFs) leading to increased expression of proteins involved in tumorigenesis. Genetic and pharmacological preclinical studies show that inhibiting FABP5 reduces protumoral markers, whereas elevation of FABP5 promotes tumour growth and spread. Thus, FABP5 might be a valid target for novel therapeutics. The evidence base is currently strongest for liver, prostate, breast, and brain cancers, and squamous cell carcinoma (SCC), which could represent relevant patient populations for any drug discovery programme.


Asunto(s)
Neoplasias , Masculino , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Ácidos Grasos/metabolismo , Proliferación Celular , Hígado/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 164: 106692, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36372184

RESUMEN

BACKGROUND: Plasma levels of the major endocannabinoids 2-arachidonoylgycerol (2AG) and anandamide (N-arachidonoylethanolamine, AEA) have been identified to vary independently with particular pathological conditions. The levels of these endocannabinoids are tightly regulated by two hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. OBJECTIVES: In this study, we have quantified these enzyme activities in the major blood fractions. PATIENTS/METHODS: In blood fractions from human volunteers, radiometric assays were used to quantify monoacylglycerol lipase and fatty acid amide hydrolase. Tagging with fluorophosphonate-rhodamine allowed quantification of platelet serine hydrolase activities. RESULTS: Fatty acid amide hydrolase activity was highest in platelets, while MAGL activity was most abundant in erythrocytes. Sampling the blood of donors on two further occasions 15 days apart showed no significant change in platelet FAAH or erythrocyte MAGL activities. Activities were not different when comparing female donors with males. Storage of these blood fractions at - 80 °C was associated with a rapid loss in enzyme activities, which could largely by avoided by storage in liquid nitrogen. Incubation of platelets and erythrocytes in the presence of thrombin lead to release of measurable FAAH, but not MAGL, activity. Tagging of serine hydrolase activities with fluorophosphonate-rhodamine allowed confirmation of MAGL activity in platelet preparations, as well as multiple other enzymes. CONCLUSIONS: These investigations suggest a potential role for FAAH in regulation of coagulation, while the role of MAGL in blood requires further investigation.


Asunto(s)
Endocannabinoides , Monoacilglicerol Lipasas , Trombina , Femenino , Humanos , Masculino , Inhibidores Enzimáticos , Eritrocitos , Serina , Trombina/metabolismo
7.
Cannabis Cannabinoid Res ; 7(4): 482-500, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33998895

RESUMEN

Background: Pharmacological management of chronic neuropathic pain (CNP) still represents a major clinical challenge. Collective harnessing of both the scientific evidence base and clinical experience (of clinicians and patients) can play a key role in informing treatment pathways and contribute to the debate on specific treatments (e.g., cannabinoids). A group of expert clinicians (pain specialists and psychiatrists), scientists, and patient representatives convened to assess the relative benefit-safety balance of 12 pharmacological treatments, including orally administered cannabinoids/cannabis-based medicinal products, for the treatment of CNP in adults. Methods: A decision conference provided the process of creating a multicriteria decision analysis (MCDA) model, in which the group collectively scored the drugs on 17 effect criteria relevant to benefits and safety and then weighted the criteria for their clinical relevance. Findings: Cannabis-based medicinal products consisting of tetrahydrocannabinol/cannabidiol (THC/CBD), in a 1:1 ratio, achieved the highest overall score, 79 (out of 100), followed by CBD dominant at 75, then THC dominant at 72. Duloxetine and the gabapentinoids scored in the 60s, amitriptyline, tramadol, and ibuprofen in the 50s, methadone and oxycodone in the 40s, and morphine and fentanyl in the 30s. Sensitivity analyses showed that even if the pain reduction and quality-of-life scores for THC/CBD and THC are halved, their benefit-safety balances remain better than those of the noncannabinoid drugs. Interpretation: The benefit-safety profiles for cannabinoids were higher than for other commonly used medications for CNP largely because they contribute more to quality of life and have a more favorable side effect profile. The results also reflect the shortcomings of alternative pharmacological treatments with respect to safety and mitigation of neuropathic pain symptoms. Further high-quality clinical trials and systematic comprehensive capture of clinical experience with cannabinoids is warranted. These results demonstrate once again the complexity and multimodal mechanisms underlying the clinical experience and impact of chronic pain.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Neuralgia , Adulto , Analgésicos/efectos adversos , Cannabidiol/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/efectos adversos , Técnicas de Apoyo para la Decisión , Dronabinol/efectos adversos , Alucinógenos/uso terapéutico , Humanos , Neuralgia/tratamiento farmacológico , Calidad de Vida
8.
Wellcome Open Res ; 6: 104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095511

RESUMEN

Background: Animal models of stroke have been criticised as having poor predictive validity, lacking risk factors prevalent in an aging population. This pilot study examined the development of comorbidities in a combined aged and high-fat diet model, and then examined the feasibility of modelling stroke in such rats. Methods: Twelve-month old male Wistar-Han rats (n=15) were fed a 60% fat diet for 8 months during which monthly serial blood samples were taken to assess the development of metabolic syndrome and pro-inflammatory markers. Following this, to pilot the suitability of these rats for undergoing surgical models of stroke, they underwent 30min of middle cerebral artery occlusion (MCAO) alongside younger controls fed a standard diet (n=10). Survival, weight and functional outcome were monitored, and blood vessels and tissues collected for analysis. Results: A high fat diet in aged rats led to substantial obesity. These rats did not develop type 2 diabetes or hypertension. There was thickening of the thoracic arterial wall and vacuole formation in the liver; but of the cytokines examined changes were not seen. MCAO surgery and behavioural assessment was possible in this model (with some caveats discussed in manuscript). Conclusions: This study shows MCAO is possible in aged, obese rats. However, this model is not ideal for recapitulating the complex comorbidities commonly seen in stroke patients.

9.
Neuropharmacology ; 191: 108586, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940011

RESUMEN

Knowledge about the therapeutic potential of medical cannabis has greatly improved over the past decade, with an ever-increasing range of developments in human clinical applications. A growing body of scientific evidence supports the use of medical cannabis products for some therapeutic indications, whilst for others, the evidence base remains disputed. For this narrative review, we incorporate areas where the current evidence base is substantial, such as intractable childhood epilepsy and multiple sclerosis, as well as areas where the evidence is still controversial, such as PTSD and anxiety. We provide a high-level summary of current developments using findings from recent major reviews, as well as real world evidence (RWE), including global database registries and other patient reported outcomes (PROs). On the one hand, our strongest empirical data supports the use of cannabis-based medicinal products (CBMPs) for conditions with relatively small patient numbers. Yet on the other hand, the conditions, where the highest patient numbers present, often have debatable clinical evidence but good RWE, incorporating PROs of 1000s of patients. The discord between PROs and the respective strength of the evidence from randomised controlled trials (RCTs) highlights the urgent need for further research. The scientific literature examining the efficacy of medical cannabis for many conditions is still developing, whilst large numbers of patients globally have been successfully using medical cannabis to treat a broad range of conditions. We conclude on the importance of systematically developing RWE databases to supplement RCTs and to bridge the current evidence gaps.


Asunto(s)
Cannabinoides/uso terapéutico , Cannabis , Marihuana Medicinal/uso terapéutico , Cannabidiol/uso terapéutico , Dronabinol/uso terapéutico , Humanos
10.
Cannabis Cannabinoid Res ; 6(4): 315-326, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33998890

RESUMEN

Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuroprotective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood-brain barrier (BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes. Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model ischemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate to study receptor mechanisms. Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH), whereas CBDV (10 nM-10 µM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV (300 nM-10 µM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes, CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage markers. Antagonists for CB1, CB2, PPAR-γ, PPAR-α, 5-HT1A, and TRPV1 had no effect on CBG (3 µM) or CBDV (1 µM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of CBDV, but no molecular target was identified for CBG. Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance our understanding of the protective effects of CBG and CBDV and warrant further investigation into these compounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and CBDV and their corresponding mechanisms of action.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Barrera Hematoencefálica/metabolismo , Cannabinoides , Células Endoteliales/metabolismo , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Cannabis Cannabinoid Res ; 6(1): 7-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614948

RESUMEN

Coronavirus disease-19 (COVID-19)-related anxiety and post-traumatic stress symptoms (PTSS) or post-traumatic stress disorder (PTSD) are likely to be a significant long-term issue emerging from the current pandemic. We hypothesize that cannabidiol (CBD), a chemical isolated from Cannabis sativa with reported anxiolytic properties, could be a therapeutic option for the treatment of COVID-19-related anxiety disorders. In the global over-the-counter CBD market, anxiety, stress, depression, and sleep disorders are consistently the top reasons people use CBD. In small randomized controlled clinical trials, CBD (300-800 mg) reduces anxiety in healthy volunteers, patients with social anxiety disorder, those at clinical high risk of psychosis, in patients with Parkinson's disease, and in individuals with heroin use disorder. Observational studies and case reports support these findings, extending to patients with anxiety and sleep disorders, Crohn's disease, depression, and in PTSD. Larger ongoing trials in this area continue to add to this evidence base with relevant patient cohorts, sample sizes, and clinical end-points. Pre-clinical studies reveal the molecular targets of CBD in these indications as the cannabinoid receptor type 1 and cannabinoid receptor type 2 (mainly in fear memory processing), serotonin 1A receptor (mainly in anxiolysis) and peroxisome proliferator-activated receptor gamma (mainly in the underpinning anti-inflammatory/antioxidant effects). Observational and pre-clinical data also support CBD's therapeutic value in improving sleep (increased sleep duration/quality and reduction in nightmares) and depression, which are often comorbid with anxiety. Together these features of CBD make it an attractive novel therapeutic option in COVID-related PTSS that merits investigation and testing through appropriately designed randomized controlled trials.


Asunto(s)
Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/etiología , COVID-19 , Cannabidiol/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Humanos
12.
Med Cannabis Cannabinoids ; 4(2): 86-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35224428

RESUMEN

INTRODUCTION: Cannabidiol (CBD) can be isolated from Cannabis sativa L. or synthetically produced. The aim of this study was to compare the in vitro effects of purified natural and synthetic CBD to establish any pharmacological differences or superiority between sources. METHODS: Six purified samples of CBD were obtained, 4 of these were natural and 2 synthetic. The anticancer effects of CBD were assessed in a human ovarian cancer cell line (SKOV-3 cells). The neuroprotective effects of CBD were assessed in human pericytes in a model of stroke (oxygen glucose deprivation [OGD]). The ability of CBD to restore inflammation-induced intestinal permeability was assessed in differentiated human Caco-2 cells (a model of enterocytes). RESULTS: (1) In proliferating and confluent SKOV-3 cells, all CBD samples similarly reduced resazurin metabolism as a marker of cell viability in a concentration-dependent manner (p < 0.001). (2) In pericytes exposed to OGD, all CBD samples similarly reduced cellular damage (measured by lactate dehydrogenase) at 24 h by 31-48% and reduced inflammation (measured by IL-6 secretion) by 30-53%. Attenuation of IL-6 was inhibited by 5HT1A receptor antagonism for all CBD sources. (3) In differentiated Caco-2 cells exposed to inflammation (TNFα and IFNγ, 10 ng/mL for 24 h), each CBD sample increased the speed of recovery of epithelial permeability compared to control (p < 0.05-0.001), which was inhibited by a CB1 receptor antagonist. CONCLUSION: Our results suggest that there is no pharmacological difference in vitro in the antiproliferative, anti-inflammatory, or permeability effects of purified natural versus synthetic CBD. The purity and reliability of CBD samples, as well as the ultimate pharmaceutical preparation, should all be considered above the starting source of CBD in the development of new CBD medicines.

13.
J Cereb Blood Flow Metab ; 41(1): 3-13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538284

RESUMEN

Remote ischaemic conditioning (RIC) is achieved by repeated transient ischaemia of a distant organ/limb and is neuroprotective in experimental ischaemic stroke. However, the optimal time and methods of administration are unclear. Systematic review identified relevant preclinical studies; two authors independently extracted data on infarct volume, neurological deficit, RIC method (administration time, site, cycle number, length of limb occlusion (dose)), species and quality. Data were analysed using random effects models; results expressed as standardised mean difference (SMD). In 57 publications incorporating 99 experiments (1406 rats, 101 mice, 14 monkeys), RIC reduced lesion volume in transient (SMD -2.0; 95% CI -2.38, -1.61; p < 0.00001) and permanent (SMD -1.54; 95% CI -2.38, -1.61; p < 0.00001) focal models of ischaemia and improved neurological deficit (SMD -1.63; 95% CI -1.97, -1.29, p < 0.00001). In meta-regression, cycle length and number, dose and limb number did not interact with infarct volume, although country and physiological monitoring during anaesthesia did. In all studies, RIC was ineffective if the dose was <10 or ≥50 min. Median study quality was 7 (range 4-9/10); Egger's test suggested publication bias (p < 0.001). RIC is most effective in experimental stroke using a dose between 10 and 45 min. Further studies using repeated dosing in animals with co-morbidities are warranted.


Asunto(s)
Isquemia Encefálica/fisiopatología , Precondicionamiento Isquémico/métodos , Accidente Cerebrovascular/fisiopatología , Animales , Modelos Animales de Enfermedad , Haplorrinos , Ratones , Ratas , Ratas Sprague-Dawley
14.
Eur J Neurol ; 28(4): 1225-1233, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217147

RESUMEN

BACKGROUND AND PURPOSE: Remote ischaemic per-conditioning (RIC) is neuroprotective in experimental ischaemic stroke. Several neurohumoral, vascular and inflammatory mediators are implicated. The effect of RIC on plasma biomarkers was assessed using clinical data from the REmote ischaemic Conditioning After Stroke Trial (RECAST-1). METHODS: RECAST-1 was a pilot sham-controlled blinded trial in 26 patients with ischaemic stroke, randomized to receive four 5-min cycles of RIC within 24 h of ictus. Plasma taken pre-intervention, immediately post-intervention and on day 4 was analysed for nitric oxide (nitrate/nitrite) using chemiluminescence and all other biomarkers by multiplex analysis. Biomarkers were correlated with clinical outcome (day 90 National Institutes of Health Stroke Scale, modified Rankin Scale, Barthel index). RESULTS: Remote ischaemic per-conditioning reduced serum amyloid protein (SAP) and tissue necrosis factor α (TNF-α) levels from pre- to post-intervention (n = 13, two-way ANOVA, p < 0.05). Overall (n = 26), increases in SAP pre- to post-intervention and pre-intervention to day 4 were moderately correlated with worse day 90 clinical outcomes. No consistent significant changes over time, or by treatment, or correlations with outcome were seen for other biomarkers. CONCLUSIONS: Remote ischaemic per-conditioning reduced SAP and TNF-α levels from pre- to post-intervention. Increases in plasma levels of SAP were associated with worse clinical outcomes after ischaemic stroke. Larger studies assessing biomarkers and the safety and efficacy of RIC in acute ischaemic stroke are warranted to further understand these relationships.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Biomarcadores , Isquemia Encefálica/terapia , Humanos , Neuroprotección , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
15.
Br J Pharmacol ; 177(19): 4330-4352, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32608035

RESUMEN

Embase and PubMed were systematically searched for articles addressing the neuroprotective properties of phytocannabinoids, apart from cannabidiol and Δ9 -tetrahydrocannabinol, including Δ9 -tetrahydrocannabinolic acid, Δ9 -tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, cannabichromene, cannabichromenic acid, cannabichromevarin, cannabigerol, cannabigerolic acid, cannabigerivarin, cannabigerovarinic acid, cannabichromevarinic acid, cannabidivarinic acid, and cannabinol. Out of 2,341 studies, 31 articles met inclusion criteria. Cannabigerol (range 5 to 20 mg·kg-1 ) and cannabidivarin (range 0.2 to 400 mg·kg-1 ) displayed efficacy in models of Huntington's disease and epilepsy. Cannabichromene (10-75 mg·kg-1 ), Δ9 -tetrahydrocannabinolic acid (20 mg·kg-1 ), and tetrahydrocannabivarin (range 0.025-2.5 mg·kg-1 ) showed promise in models of seizure and hypomobility, Huntington's and Parkinson's disease. Limited mechanistic data showed cannabigerol, its derivatives VCE.003 and VCE.003.2, and Δ9 -tetrahydrocannabinolic acid mediated some of their effects through PPAR-γ, but no other receptors were probed. Further studies with these phytocannabinoids, and their combinations, are warranted across a range of neurodegenerative disorders.


Asunto(s)
Cannabidiol , Enfermedad de Huntington , Cannabidiol/farmacología , Dronabinol , Humanos , Convulsiones
16.
Diabetes Ther ; 11(9): 1947-1963, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32715425

RESUMEN

INTRODUCTION: While the beneficial effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiovascular and renal outcomes are recognized, their direct effects on endothelial function remain unclear. We, therefore, undertook a systematic review to evaluate the current literature in this area. METHODS: Electronic databases (PubMed, EMBASE, and Medline) were systematically searched using PRISMA guidelines for studies involving the in vitro, in vivo, or ex vivo administration of SGLT-2 inhibitors to animals, vascular tissue, or vascular endothelial cells. RESULTS: Of 144 retrieved publications, 24 experimental studies met the inclusion criteria. Reporting of possible sources of bias were poor, making the overall risk of bias difficult to assess. Within the 24 studies, the SGLT-2 inhibitors canagliflozin, ipragliflozin, empagliflozin, dapagliflozin, tofogliflozin, and luseogliflozin were assessed as interventions. Animal model studies (n = 17) demonstrated that all SGLT-2 inhibitors prevented endothelial dysfunction and enhanced endothelium-dependent vasorelaxation in diabetic and non-diabetic models. In vitro studies (n = 9) using human endothelial cells indicated a direct anti-inflammatory effect of dapagliflozin (1-100 nM) and canagliflozin, (10 µM), while empagliflozin (1 and 10 µM) improved viability of hyperglycemic cells. Potential mechanisms of action of the SGLT-2 inhibitors include a reduction in oxidative stress, modulation of adhesion molecules and reductions in pro-inflammatory cytokines. CONCLUSIONS: Preclinical studies indicate that SGLT-2 inhibitors attenuate vascular dysfunction in preclinical models via a combination of mechanisms that appear to act independently of glucose-lowering benefits.

17.
Brain Behav Immun ; 89: 100-117, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485291

RESUMEN

Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.


Asunto(s)
Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Citocinas , Modelos Animales de Enfermedad , Femenino , Poli I-C , Embarazo , Ratas , Aislamiento Social , Serina-Treonina Quinasas TOR
18.
Artículo en Inglés | MEDLINE | ID: mdl-32587575

RESUMEN

Osteocalcin (OCN) is a bone-derived protein that is detected within human calcified vascular tissue. Calcification is particularly prevalent in chronic kidney disease (CKD) patients but the role of OCN in calcification, whether active or passive, has not been elucidated. Part 1: The relationship between OCN, CKD and vascular calcification was assessed in CKD patients (n = 28) and age-matched controls (n = 19). Part 2: in vitro, we analyzed whether addition of uncarboxylated osteocalcin (ucOCN) influenced the rate or extent of vascular smooth muscle cell (VSMC) calcification. Human aortic VSMCs were cultured in control media or mineralisation inducing media (MM) containing increased phosphate with or without ucOCN (10 or 30 ng/mL) for up to 21 days. Markers of osteogenic differentiation and calcification were determined [alkaline phosphatase (ALP) activity, total intracellular OCN, Runx2 expression, α-SMA expression, alizarin red calcium staining, and calcium quantification]. Part 1 results: In our human population, calcification was present (mean age 76 years), but no differences were detected between CKD patients and controls. Plasma total OCN was increased in CKD patients compared to controls (14 vs. 9 ng/mL; p < 0.05) and correlated to estimated glomerular filtration rate (p < 0.05), however no relationship was detected between total OCN and calcification. Part 2 results: in vitro, ALP activity, α-SMA expression and calcium concentrations were significantly increased in MM treated VSMCs at day 21, but no effect of ucOCN was observed. Cells treated with control media+ucOCN for 21 days did not show increases in ALP activity nor calcification. In summary, although plasma total OCN was increased in CKD patients, this study did not find a relationship between OCN and calcification in CKD and non-CKD patients, and found no in vitro evidence of an active role of ucOCN in vascular calcification as assessed over 21 days. ucOCN appears not to be a mediator of vascular calcification, but further investigation is warranted.


Asunto(s)
Calcificación Fisiológica , Músculo Liso Vascular/fisiología , Osteocalcina/fisiología , Calcificación Vascular/fisiopatología , Anciano , Células Cultivadas , Femenino , Humanos , Masculino , Insuficiencia Renal Crónica/complicaciones , Calcificación Vascular/complicaciones
19.
Br J Clin Pharmacol ; 86(6): 1125-1138, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32128848

RESUMEN

BACKGROUND: In vivo studies show that cannabidiol (CBD) acutely reduces blood pressure (BP) in men. The aim of this study was to assess the effects of repeated CBD dosing on haemodynamics. METHODS: Twenty-six healthy males were given CBD (600 mg) or placebo orally for seven days in a randomised, placebo-controlled, double-blind, parallel study (n = 13/group). Cardiovascular parameters were assessed at rest and in response to isometric exercise after acute and repeated dosing using Finometer®, Vicorder® and Duplex ultrasound. RESULTS: Compared to placebo, CBD significantly reduced resting mean arterial pressure (P = .04, two-way ANOVA, mean difference (MD) -2 mmHg, 95% CI -3.6 to -0.3) after acute dosing, but not after repeated dosing. In response to stress, volunteers who had taken CBD had lower systolic BP after acute (P = .001, two-way ANOVA, MD -6 mmHg, 95% CI -10 to -1) and repeated (P = .02, two-way ANOVA, MD -5.7 mmHg, 95% CI -10 to -1) dosing. Seven days of CBD increased internal carotid artery diameter (MD +0.55 mm, P = .01). Within the CBD group, repeated dosing reduced arterial stiffness by day 7 (pulse wave velocity; MD -0.44 m/s, P = .05) and improved endothelial function (flow mediation dilatation, MD +3.5%, P = .02, n = 6 per group), compared to day 1. CONCLUSION: CBD reduces BP at rest after a single dose but the effect is lost after seven days of treatment (tolerance); however, BP reduction during stress persists. The reduction in arterial stiffness and improvements in endothelial function after repeated CBD dosing are findings that warrant further investigation in populations with vascular diseases.


Asunto(s)
Cannabidiol , Rigidez Vascular , Presión Sanguínea , Método Doble Ciego , Humanos , Masculino , Análisis de la Onda del Pulso
20.
J Cell Physiol ; 235(4): 3414-3424, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31549398

RESUMEN

Some human observational studies have suggested an anti-inflammatory role of osteocalcin (OCN). An inflammatory protocol using interferon-γ and tumor necrosis factor-α (10 ng/ml) was employed to examine the acute (24 hr) and chronic (144 hr) effects of uncarboxylated OCN (ucOCN) in commercial, primary, subcultured human aortic endothelial cells (HAEC), and human smooth muscle cells (HASMCs). The inflammatory protocol increased phosphorylation of intracellular signaling proteins (CREB, JNK, p38, ERK, AKT, STAT3, STAT5) and increased secretion of adhesion markers (vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1) and proinflammatory cytokines (interleukin-6 [IL-6], IL-8). After acute inflammation, there were no additive or reductive effects of ucOCN in either cell type. Following chronic inflammation, ucOCN did not affect cell responses, nor did it appear to have any pro- or anti-inflammatory effects when administered acutely or chronically on its own in either cell type. Additionally, ucOCN did not affect lipopolysaccharide (LPS)-induced acute inflammation in HAECs or HASMCs. The findings of this study do not support a causal role for OCN within the models of vascular inflammation chosen. Further confirmatory studies are warranted.


Asunto(s)
Adhesión Celular/genética , Inflamación/genética , Músculo Liso Vascular/metabolismo , Osteocalcina/genética , Aorta/efectos de los fármacos , Aorta/crecimiento & desarrollo , Aorta/patología , Citocinas/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Lipopolisacáridos/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Fosforilación/genética , Factor de Necrosis Tumoral alfa/genética , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...