Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 39(21): 4142-4152, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886012

RESUMEN

Cannabis sativa alters sensory perception and exhibits potential medicinal benefits. In mammals, cannabinoids activate two canonical receptors, CB1/CB2, as well additional receptors/ion channels whose overall contributions to cannabinoid signaling have yet to be fully assessed. In Caenorhabditis elegans, the endogenous cannabinoid receptor agonist, 2-arachidonoylglycerol (2-AG) activates a CB1 ortholog, NPR-19, to modulate behavior (Oakes et al., 2017). In addition, 2-AG stimulates the NPR-19 independent release of both serotonin (5-HT) and dopamine (DA) from subsets of monoaminergic neurons to modulate locomotory behaviors through a complex monoaminergic signaling pathway involving multiple serotonin and dopamine receptors. 2-AG also inhibits locomotion in remodeled monoamine receptor mutant animals designed to measure the acute release of either 5-HT or DA, confirming the direct effects of 2-AG on monoamine release. 2-AG-dependent locomotory inhibition requires the expression of transient receptor potential vanilloid 1 (TRPV1) and TRPN-like channels in the serotonergic or dopaminergic neurons, respectively, and the acute pharmacological inhibition of the TRPV1-like channel abolishes both 2-AG-dependent 5-HT release and locomotory inhibition, suggesting the 2-AG may activate the channel directly. This study highlights the advantages of identifying and assessing both CB1/CB2-dependent and independent cannabinoid signaling pathways in a genetically tractable, mammalian predictive model, where cannabinoid signaling at the molecular/neuronal levels can be correlated directly with changes in behavior.SIGNIFICANCE STATEMENT This study is focused on assessing CB1/CB2-independent cannabinoid signaling in a genetically tractable, whole-animal model where cannabinoid signaling at the molecular/neuronal levels can be correlated with behavioral change. Caenorhabditis elegans contains a cannabinoid signaling system mediated by a canonical cannabinoid receptor, NPR-19, with orthology to human CB1/CB2 (Oakes et al., 2017). The present study has characterized an NPR-19-independent signaling pathway that involves the cannabinoid-dependent release of both serotonin and dopamine and the expression of distinct TRP-like channels on the monoaminergic neurons. Our work should be of interest to those studying the complexities of CB1/CB2-independent cannabinoid signaling, the role of TRP channels in the modulation of monoaminergic signaling, and the cannabinoid-dependent modulation of behavior.


Asunto(s)
Cannabinoides/farmacología , Dopamina/metabolismo , Serotonina/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Conducta Animal , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Endocannabinoides/farmacología , Glicéridos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPV/efectos de los fármacos
2.
PLoS One ; 13(5): e0196954, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723289

RESUMEN

Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Neuropéptidos/metabolismo , Nocicepción/efectos de los fármacos , Octopamina/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Tiramina/farmacología , 1-Octanol , Secuencia de Aminoácidos , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Conducta Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Nocicepción/fisiología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
3.
J Neurosci ; 37(11): 2859-2869, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28188220

RESUMEN

Cannabis sativa, or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits. The present study demonstrates that the endogenous cannabinoid receptor agonists 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate a canonical cannabinoid receptor in Caenorhabditis elegans and also modulate monoaminergic signaling at multiple levels. 2-AG or AEA inhibit nociception and feeding through a pathway requiring the cannabinoid-like receptor NPR-19. 2-AG or AEA activate NPR-19 directly and cannabinoid-dependent inhibition can be rescued in npr-19-null animals by the expression of a human cannabinoid receptor, CB1, highlighting the orthology of the receptors. Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requiring an α2A-adrenergic-like octopamine (OA) receptor, OCTR-1, and a 5-HT1A-like serotonin (5-HT) receptor, SER-4, that involves a complex interaction among cannabinoid, octopaminergic, and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT. This study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoaminergic signaling, and highlights the advantages of studying cannabinoid signaling in a genetically tractable whole-animal model.SIGNIFICANCE STATEMENTCannabis sativa, or marijuana, causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have used the Caenorhabditis elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate monoaminergic signaling, potentially affecting an array of disorders, including anxiety and depression. This study highlights the potential role of cannabinoids in modulating monoaminergic signaling and the advantages of studying cannabinoid signaling in a genetically tractable, whole-animal model.


Asunto(s)
Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans/fisiología , Endocannabinoides/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Reacción de Prevención/fisiología , Cannabinoides/metabolismo , Conducta Alimentaria/fisiología , Nocicepción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA