Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISME J ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988135

RESUMEN

Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterised proteomic changes in the native symbiont Breviolum minutum during colonisation of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and Branchioglossum minutum increased accumulation of symbiont proteins associated with acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding symbiont analysis to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners (i.e., native versus non-native symbionts) may impact the fitness of the cnidarian-dinoflagellate symbiosis.

2.
Biology (Basel) ; 12(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37508443

RESUMEN

The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.

3.
PeerJ ; 11: e15023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151292

RESUMEN

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Asunto(s)
Arrecifes de Coral , Dinoflagelados , Variación Genética , Dinoflagelados/clasificación , Dinoflagelados/genética , Filogenia , Consenso , Antozoos , Simbiosis
4.
Microorganisms ; 11(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36838257

RESUMEN

The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.

5.
Plant Cell Physiol ; 64(4): 433-447, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36565060

RESUMEN

Coral bleaching is primarily caused by high sea surface temperatures, and nutrient enrichment of reefs is associated with lower resilience to thermal stress and ecological degradation. Excess inorganic nitrogen relative to phosphate has been proposed to sensitize corals to thermal bleaching. We assessed the physiological and proteomic responses of cultures of the dinoflagellate coral symbiont Symbiodinium microadriaticum to elevated temperature under low-nutrient, high-nutrient and phosphate-limited conditions. Elevated temperature induced reductions of many chloroplast proteins, particularly the light-harvesting complexes, and simultaneously increased the abundance of many chaperone proteins. Proteomes were similar when the N:P ratio was near the Redfield ratio, regardless of absolute N and P concentrations, but were strongly affected by phosphate limitation. Very high N:P inhibited Symbiodinium cell division while increasing the abundance of chloroplast proteins. The proteome response to phosphate limitation was greater than that to elevated temperature, as measured by the number of differentially abundant proteins. Increased physiological sensitivity to high temperatures under high nutrients or imbalanced N:P ratios was not apparent; however, oxidative stress response proteins were enriched among proteins responding to thermal stress under imbalanced N:P ratios. These data provide a detailed catalog of the effects of high temperatures and nutrients on a coral symbiont proteome.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Arrecifes de Coral , Proteoma/metabolismo , Proteómica , Antozoos/metabolismo , Fosfatos/metabolismo , Dinoflagelados/metabolismo , Nutrientes , Simbiosis
6.
Adv Mar Biol ; 92: 55-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36208879

RESUMEN

Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Arrecifes de Coral , Dinoflagelados/genética , Ecosistema , Simbiosis
7.
J Exp Biol ; 225(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36156083

RESUMEN

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Compuestos Orgánicos Volátiles , Alcanos , Animales , Dinoflagelados/fisiología , Anémonas de Mar/fisiología , Simbiosis
8.
Appl Environ Microbiol ; 88(12): e0041222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35678605

RESUMEN

Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.


Asunto(s)
Dinoflagelados , Anémonas de Mar , Animales , Carbono , Nitrógeno , Anémonas de Mar/fisiología , Simbiosis
9.
ISME J ; 16(8): 1883-1895, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35444262

RESUMEN

Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , Antozoos/microbiología , Arrecifes de Coral , Señales (Psicología) , Gammaproteobacteria/genética , Proteómica , Simbiosis , Extractos de Tejidos
10.
Sci Data ; 9(1): 153, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383179

RESUMEN

The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/genética , Antozoos/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Respuesta al Choque Térmico , Metaboloma , Filogenia , Proteoma , Simbiosis , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA