Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Genome ; 12(3): 1-9, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-33016579

RESUMEN

CORE IDEAS: Genomic data from diverse germplasm used for application in targeted breeding germplasm. Six SNPs identified that can characterize all haplotypes present at SD1 locus in diverse rice. Three alleles of the SD1 gene identified in US rice germplasm including two semidwarf alleles. Two SNPs identified and validated that differentiate the SD1 allele present in US germplasm. KASP assays designed for both SNPs for use in high-throughput breeding applications. Plant height is an important target in US rice (Oryza sativa L.) breeding programs and the large effect of the sd1 semidwarf gene makes it a suitable target for marker-assisted selection. Although the deletion underlying the semidwarf allele is known and a gel-based DNA marker is available, this marker is not ideal for applied breeding because of throughput and cost constraints. The objectives of this study were to characterize the haplotype diversity at the SD1 locus within US rice germplasm and develop a single nucleotide polymorphism (SNP) assay for breeding applications. The International Rice Research Institute (IRRI) SNP-Seek database was used to characterize the haplotype diversity present at the SD1 locus across a set of rice accessions and seven haplotypes were identified. The US rice germplasm was not well represented in the IRRI database, so a set of six SNPs was identified that could differentiate all detected haplotypes. These SNPs were designed into Kompetitive allele specific polymerase chain reaction (KASP) assays and screened across 359 elite US genotypes. Of the seven haplotypes, two were present within the US germplasm, one of which was the semidwarf deletion allele. A third haplotype was observed within the US medium-grain germplasm and demonstrated to be a semidwarf allele derived from the induced mutation in the 'Calrose76'. Two SNPs were identified that distinguish the three SD1 haplotypes present in the US germplasm. These SNPs were validated across the US germplasm and two biparental populations.


Asunto(s)
Oryza/genética , Alelos , Cruzamiento , Haplotipos , Sindactilia , Estados Unidos
2.
Mol Plant Pathol ; 7(5): 405-16, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20507456

RESUMEN

SUMMARY Sheath blight, caused by the fungus Rhizoctonia solani, is a major disease of rice world-wide, but little is known about the host response to infection. The objective of this study was to identify proteins and DNA markers in resistant and susceptible rice associated with response to infection by R. solani. Replicated two-dimensional polyacrylamide gel electrophoresis experiments were conducted to detect proteins differentially expressed under inoculated and non-inoculated conditions. Tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS) was carried out for protein identification with the NCBI non-redundant protein database. Seven proteins were increased after inoculation in both susceptible and resistant plants. Six of the seven proteins were identified with presumed antifungal, photosynthetic and proteolytic activities. An additional 14 proteins were detected in the response of the resistant line. Eleven of the 14 proteins were identified with presumed functions relating to antifungal activity, signal transduction, energy metabolism, photosynthesis, molecular chaperone, proteolysis and antioxidation. The induction of 3-beta-hydroxysteroid dehydrogenase/isomerase was detected for the first time in resistant rice plants after pathogen challenge, suggesting a defensive role of this enzyme in rice against attack by R. solani. The chromosomal locations of four induced proteins were found to be in close physical proximity to genetic markers for sheath blight resistance in two genetic mapping populations. The proteomic and genetic results from this study indicate a complex response of rice to challenge by R. solani that involves simultaneous induction of proteins from multiple defence pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...