Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(8): 3588-3603, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38681089

RESUMEN

The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.

2.
Eur Respir J ; 63(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212075

RESUMEN

The pleural lining of the thorax regulates local immunity, inflammation and repair. A variety of conditions, both benign and malignant, including pleural mesothelioma, can affect this tissue. A lack of knowledge concerning the mesothelial and stromal cells comprising the pleura has hampered the development of targeted therapies. Here, we present the first comprehensive single-cell transcriptomic atlas of the human parietal pleura and demonstrate its utility in elucidating pleural biology. We confirm the presence of known universal fibroblasts and describe novel, potentially pleural-specific, fibroblast subtypes. We also present transcriptomic characterisation of multiple in vitro models of benign and malignant mesothelial cells, and characterise these through comparison with in vivo transcriptomic data. While bulk pleural transcriptomes have been reported previously, this is the first study to provide resolution at the single-cell level. We expect our pleural cell atlas will prove invaluable to those studying pleural biology and disease. It has already enabled us to shed light on the transdifferentiation of mesothelial cells, allowing us to develop a simple method for prolonging mesothelial cell differentiation in vitro.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Pleura/patología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno/patología , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Perfilación de la Expresión Génica
3.
Neuro Oncol ; 26(5): 858-871, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38153426

RESUMEN

BACKGROUND: Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS: We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS: We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS: Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.


Asunto(s)
Neoplasias Encefálicas , Endorribonucleasas , Glioblastoma , Células Mieloides , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Ratones , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Respuesta de Proteína Desplegada , Microambiente Tumoral , Células Tumorales Cultivadas , Estrés del Retículo Endoplásmico
4.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548590

RESUMEN

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Interferones , Metiltransferasas , Animales , Ratones , Interferones/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Bicatenario
7.
Br J Cancer ; 125(8): 1039-1055, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34226685

RESUMEN

Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.


Asunto(s)
Amianto/toxicidad , Redes Reguladoras de Genes , Mesotelioma/terapia , Terapia Combinada , Epigénesis Genética , Humanos , Mesotelioma/inducido químicamente , Mesotelioma/genética , Mesotelioma/patología , Pronóstico
8.
Thorax ; 76(11): 1154-1162, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33692175

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer most commonly caused by prior exposure to asbestos. Median survival is 12-18 months, since surgery is ineffective and chemotherapy offers minimal benefit. Preclinical models that faithfully recapitulate the genomic and histopathological features of cancer are critical for the development of new treatments. The most commonly used models of MPM are two-dimensional cell lines established from primary tumours or pleural fluid. While these have provided some important insights into MPM biology, these cell models have significant limitations. In order to address some of these limitations, spheroids and microfluidic chips have more recently been used to investigate the role of the three-dimensional environment in MPM. Efforts have also been made to develop animal models of MPM, including asbestos-induced murine tumour models, MPM-prone genetically modified mice and patient-derived xenografts. Here, we discuss the available in vitro and in vivo models of MPM and highlight their strengths and limitations. We discuss how newer technologies, such as the tumour-derived organoids, might allow us to address the limitations of existing models and aid in the identification of effective treatments for this challenging-to-treat disease.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Animales , Ratones
9.
Oncol Lett ; 18(5): 4449-4456, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31611954

RESUMEN

Human anterior gradient proteins AGR2 and AGR3 are overexpressed in a variety of adenocarcinomas and are often secreted in cancer patients' specimens, which suggests a role for AGR proteins in intra and extracellular compartments. Although these proteins exhibit high sequence homology, AGR2 is predominantly described as a pro-oncogene and a potential prognostic biomarker. However, little is known about the function of AGR3. Therefore, the aim of the present study was to investigate the role of AGR3 in breast cancer. The results demonstrated that breast cancer cells secrete AGR3. Furthermore, it was revealed that extracellular AGR3 (eAGR3) regulates tumor cell adhesion and migration. The current study indicated that the pharmacological and genetic perturbation of Src kinase signaling, through treatment with Dasatinib (protein kinase inhibitor) or investigating cells that express a dominant-negative form of Src, significantly abrogated eAGR3-mediated breast cancer cell migration. Therefore, the results indicated that eAGR3 may control tumor cell migration via activation of Src kinases. The results of the present study indicated that eAGR3 may serve as a microenvironmental signaling molecule in tumor-associated processes.

10.
EMBO Mol Med ; 11(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31040128

RESUMEN

Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo , Multimerización de Proteína , Proteostasis , Animales , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Masculino , Ratones , Mucoproteínas/genética , Proteínas Oncogénicas/genética
11.
FEBS J ; 286(2): 279-296, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29239107

RESUMEN

The unfolded protein response (UPR) is a conserved adaptive pathway that helps cells cope with the protein misfolding burden within the endoplasmic reticulum (ER). Imbalance between protein folding demand and capacity in the ER leads to a situation called ER stress that is often observed in highly proliferative and secretory tumor cells. As such, activation of the UPR signaling has emerged as a key adaptive mechanism promoting cancer progression. It is becoming widely acknowledged that, in addition to its intrinsic effect on tumor biology, the UPR can also regulate tumor microenvironment. In this review, we discuss how the UPR coordinates the crosstalk between tumor and stromal cells, such as endothelial cells, normal parenchymal cells, and immune cells. In addition, we further describe the involvement of ER stress signaling in the response to current treatments as well as its impact on antitumor immunity mainly driven by immunogenic cell death. Finally, in this context, we discuss the relevance of targeting ER stress/UPR signaling as a potential anticancer approach.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/patología , Neoplasias/patología , Células del Estroma/patología , Microambiente Tumoral , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias/metabolismo , Células del Estroma/metabolismo
12.
Nat Commun ; 9(1): 3267, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111846

RESUMEN

Triple-negative breast cancer (TNBC) lacks targeted therapies and has a worse prognosis than other breast cancer subtypes, underscoring an urgent need for new therapeutic targets and strategies. IRE1 is an endoplasmic reticulum (ER) stress sensor, whose activation is predominantly linked to the resolution of ER stress and, in the case of severe stress, to cell death. Here we demonstrate that constitutive IRE1 RNase activity contributes to basal production of pro-tumorigenic factors IL-6, IL-8, CXCL1, GM-CSF, and TGFß2 in TNBC cells. We further show that the chemotherapeutic drug, paclitaxel, enhances IRE1 RNase activity and this contributes to paclitaxel-mediated expansion of tumor-initiating cells. In a xenograft mouse model of TNBC, inhibition of IRE1 RNase activity increases paclitaxel-mediated tumor suppression and delays tumor relapse post therapy. We therefore conclude that inclusion of IRE1 RNase inhibition in therapeutic strategies can enhance the effectiveness of current chemotherapeutics.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular , Línea Celular Tumoral , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/genética , Inhibidores Enzimáticos/administración & dosificación , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones Desnudos , Paclitaxel/administración & dosificación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Neoplasias de la Mama Triple Negativas/genética
13.
EMBO Mol Med ; 10(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311133

RESUMEN

Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no effective treatment. We previously demonstrated that the ER stress sensor IRE1α (referred to as IRE1) contributes to GBM progression, through XBP1 mRNA splicing and regulated IRE1-dependent decay (RIDD) of RNA Here, we first demonstrated IRE1 signaling significance to human GBM and defined specific IRE1-dependent gene expression signatures that were confronted to human GBM transcriptomes. This approach allowed us to demonstrate the antagonistic roles of XBP1 mRNA splicing and RIDD on tumor outcomes, mainly through selective remodeling of the tumor stroma. This study provides the first demonstration of a dual role of IRE1 downstream signaling in cancer and opens a new therapeutic window to abrogate tumor progression.


Asunto(s)
Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Endorribonucleasas/metabolismo , Glioblastoma/enzimología , Glioblastoma/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Línea Celular Tumoral , Endorribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Modelos Biológicos , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/genética
14.
Clin Cancer Res ; 23(23): 7360-7374, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939749

RESUMEN

Purpose: CD90 (Thy-1) is a glycophosphatidylinositol-anchored glycoprotein considered as a surrogate marker for a variety of stem cells, including glioblastoma (GBM) stem cells (GSC). However, the molecular and cellular functions of CD90 remain unclear.Experimental Design: The function of CD90 in GBM was addressed using cellular models from immortalized and primary GBM lines, in vivo orthotopic mouse models, and GBM specimens' transcriptome associated with MRI features from GBM patients. CD90 expression was silenced in U251 and GBM primary cells and complemented in CD90-negative U87 cells.Results: We showed that CD90 is not only expressed on GSCs but also on more differentiated GBM cancer cells. In GBM patients, CD90 expression was associated with an adhesion/migration gene signature and with invasive tumor features. Modulation of CD90 expression in GBM cells dramatically affected their adhesion and migration properties. Moreover, orthotopic xenografts revealed that CD90 expression induced invasive phenotypes in vivo Indeed, CD90 expression led to enhanced SRC and FAK signaling in our GBM cellular models and GBM patients' specimens. Pharmacologic inhibition of these signaling nodes blunted adhesion and migration in CD90-positive cells. Remarkably, dasatinib blunted CD90-dependent GBM cell invasion in vivo and killed CD90high primary GSC lines.Conclusions: Our data demonstrate that CD90 is an actor of GBM invasiveness through SRC-dependent mechanisms and could be used as a predictive factor for dasatinib response in CD90high GBM patients. Clin Cancer Res; 23(23); 7360-74. ©2017 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Movimiento Celular/genética , Dasatinib/farmacología , Glioblastoma/tratamiento farmacológico , Antígenos Thy-1/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto , Anciano , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Pronóstico , Antígenos Thy-1/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
15.
Cancer Invest ; 35(5): 313-324, 2017 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-28402678

RESUMEN

Tamoxifen treatment in breast cancer patients is associated with increased risk of endometrial malignancies. Significantly, higher AGR2 expression was found in endometrial cancers that developed in women previously treated with tamoxifen compared to those who had not been exposed to tamoxifen. An association of elevated AGR2 level with myometrial invasion occurrence and invasion depth was also found. In vitro analyses identified a stimulatory effect of AGR2 on cellular proliferation. Although adverse tamoxifen effects on endometrial cells remain elusive, our work identifies elevated AGR2 as a candidate tamoxifen-dependent mechanism of action responsible for increased incidence of endometrial cancer.


Asunto(s)
Adenocarcinoma/inducido químicamente , Adenocarcinoma/metabolismo , Antineoplásicos Hormonales/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/inducido químicamente , Neoplasias Endometriales/inducido químicamente , Endometrio/efectos de los fármacos , Proteínas/metabolismo , Tamoxifeno/toxicidad , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Endometrio/metabolismo , Endometrio/patología , Femenino , Humanos , Células MCF-7 , Mucoproteínas , Invasividad Neoplásica , Proteínas Oncogénicas , Proteínas/genética , Interferencia de ARN , Estudios Retrospectivos , Factores de Riesgo , Transducción de Señal/efectos de los fármacos , Transfección , Regulación hacia Arriba
16.
Sci Signal ; 10(470)2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28292956

RESUMEN

Cellular stress induced by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) is a central feature of secretory cells and is observed in many tissues in various diseases, including cancer, diabetes, obesity, and neurodegenerative disorders. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the cytosol and nucleus to restore proteostasis. In the past decade, ER stress has emerged as a major pathway in remodeling gene expression programs that either prevent transformation or provide selective advantage in cancer cells. Controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, UPR signaling is a highly regulated process that leads to an integrated reprogramming of the cell. In this Review, we provide an overview of the regulatory mechanisms underlying UPR signaling and how this pathway modulates cancer progression, particularly the aggressiveness and chemotherapeutic resistance exhibited by glioblastoma, a form of brain cancer. We also discuss the emerging cross-talk between the UPR and related metabolic processes to ensure maintenance of proteostasis, and we highlight possible therapeutic opportunities for targeting the pathway with small molecules.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Glioblastoma/metabolismo , Respuesta de Proteína Desplegada , Animales , Apoptosis , Glioblastoma/patología , Glioblastoma/terapia , Homeostasis , Humanos , Modelos Biológicos , Transducción de Señal
17.
Onco Targets Ther ; 8: 1523-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26170690

RESUMEN

Anterior gradient protein (AGR) 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumorigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001) as well as low histological grade (P=0.003), and inversely correlated with the level of Ki-67 expression (P<0.0001). In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS), whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients.

18.
Eur J Cell Biol ; 94(3-4): 139-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25666661

RESUMEN

In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Simulación por Computador , Humanos , Mucoproteínas , Invasividad Neoplásica , Proteínas Oncogénicas
19.
Mol Cancer ; 12(1): 93, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23945296

RESUMEN

Abnormal rates of growth together with metastatic potential and lack of susceptibility to cellular signals leading to apoptosis are widely investigated characteristics of tumors that develop via genetic or epigenetic mechanisms. Moreover, in the growing tumor, cells are exposed to insufficient nutrient supply, low oxygen availability (hypoxia) and/or reactive oxygen species. These physiological stresses force them to switch into more adaptable and aggressive phenotypes. This paper summarizes the role of two key mediators of cellular stress responses, namely p53 and HIF, which significantly affect cancer progression and compromise treatment outcomes. Furthermore, it describes cross-talk between these factors.


Asunto(s)
Daño del ADN , Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Hipoxia de la Célula , Humanos , Neoplasias/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...