Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 32(1): 248-255.e2, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34813730

RESUMEN

Pachyosteosclerosis-a condition that creates dense, bulky bones-often characterizes the early evolution of secondarily aquatic tetrapods like whales and dolphins1-3 but then usually fades away as swimming efficiency increases.4 Here, we document a remarkable reversal of this pattern, namely the convergent re-emergence of bone densification in Miocene seals, dolphins, and whales from the epicontinental Paratethys Sea of eastern Europe and central Asia. This phenomenon was driven by imbalanced remodeling and inhibited resorption of primary trabeculae and coincided with hypersaline conditions-the Badenian salinity crisis-that affected the Central Paratethys between 13.8 and 13.4 Ma.5 Dense bones acting as ballast would have facilitated efficient swimming in the denser and more buoyant water and hence were likely adaptive in this setting. From the Central Paratethys, pachyosteosclerosis subsequently spread eastward, where it became a defining feature of the endemic late Miocene whale assemblage.6,7.


Asunto(s)
Phocidae , Ballenas , Animales , Huesos , Natación
2.
Sci Rep ; 9(1): 9323, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249366

RESUMEN

As the largest and among the most behaviourally complex extant terrestrial mammals, proboscideans (elephants and their extinct relatives) are iconic representatives of the modern megafauna. The timing of the evolution of large brain size and above average encephalization quotient remains poorly understood due to the paucity of described endocranial casts. Here we created the most complete dataset on proboscidean endocranial capacity and analysed it using phylogenetic comparative methods and ancestral character states reconstruction using maximum likelihood. Our analyses support that, in general, brain size and body mass co-evolved in proboscideans across the Cenozoic; however, this pattern appears disrupted by two instances of specific increases in relative brain size in the late Oligocene and early Miocene. These increases in encephalization quotients seem to correspond to intervals of important climatic, environmental and faunal changes in Africa that may have positively selected for larger brain size or body mass.


Asunto(s)
Evolución Biológica , Encéfalo , Mamíferos Proboscídeos , Animales , Fósiles , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...