Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 87(8): 925-932, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37156521

RESUMEN

PsADH, an alcohol dehydrogenase originating in Pantoea sp. was characterized and found to convert a broad variety of fatty alcohols into their corresponding aldehydes, the substrates of alkane biosynthesis. By coupling PsADH with NpAD, a cyanobacterial aldehyde-deformylating oxygenase, and by optimizing the conditions of the enzyme-catalyzed reactions, we achieved a 52% conversion of 1-tetradecanol to tridecane. We further applied this system to generate alkanes ranging from C5-17. These alkanes can be used as biofuels, suggesting that introducing a suitable alcohol dehydrogenase is an effective strategy to utilize fatty alcohols for alkane production.


Asunto(s)
Aldehídos , Oxigenasas , Alcohol Deshidrogenasa , Alcoholes Grasos , Alcanos , Catálisis , Alcoholes
2.
Appl Environ Microbiol ; 88(23): e0126422, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36416567

RESUMEN

Alkanes produced by microorganisms are expected to be an alternative to fossil fuels as an energy source. Microbial synthesis of alkanes involves the formation of fatty aldehydes via fatty acyl coenzyme A (acyl-CoA) intermediates derived from fatty acid metabolism, followed by aldehyde decarbonylation to generate alkanes. Advancements in metabolic engineering have enabled the construction of such pathways in various microorganisms, including Escherichia coli. However, endogenous aldehyde reductases in the host microorganisms are highly active in converting fatty aldehydes to fatty alcohols, limiting the substrate pool for alkane production. To reuse the alcohol by-product, a screening of fatty alcohol-assimilating microorganisms was conducted, and a bacterial strain, Pantoea sp. strain 7-4, was found to convert 1-tetradecanol to tetradecanal. From this strain, an alcohol dehydrogenase, PsADH, was purified and found to be involved in 1-tetradecanol-oxidizing reaction. Subsequent heterologous expression of the PsADH gene in E. coli was conducted, and recombinant PsADH was purified for a series of biochemical characterizations, including cofactors, optimal reaction conditions, and kinetic parameters. Furthermore, direct alkane production from alcohol was achieved in E. coli by coexpressing PsADH with a cyanobacterial aldehyde-deformylating oxygenase and a reducing system, including ferredoxin and ferredoxin reductase, from Nostoc punctiforme PCC73102. The alcohol-aldehyde-alkane synthetic route established in this study will provide a new approach to utilizing fatty alcohols for the production of alkane biofuel. IMPORTANCE Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. In this study, we discovered an alcohol dehydrogenase, PsADH, from the bacterium Pantoea sp. 7-4, which can oxidize 1-tetradecanol to tetradecanal. The medium-chain aldehyde products generated by this enzyme can serve as the substrate of aldehyde-deformylating oxygenase to produce alkanes. The enzyme found in this study can be applied to the biosynthetic pathway involving the formation of medium-chain aldehydes to produce alkanes and other valuable compounds.


Asunto(s)
Alcohol Deshidrogenasa , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Ferredoxinas/metabolismo , Aldehídos/metabolismo , Alcoholes/metabolismo , Alcanos/metabolismo , Ácidos Grasos/metabolismo , Alcoholes Grasos/metabolismo , Oxigenasas/metabolismo
3.
J Biosci Bioeng ; 115(5): 467-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23290995

RESUMEN

To create strains that have high productivity of lactic acid without neutralization, a genome-wide screening for strains showing hyper-resistance to 6% l-lactic acid (pH 2.6) was performed using the gene deletion collection of Saccharomyces cerevisiae. We identified 94 genes whose disruption led to resistance to 6% lactic acid in rich medium. We also found that multiple combinations of Δdse2, Δscw11, Δeaf3, and/or Δsed1 disruption led to enhanced resistance to lactic acid depending upon their combinations. In particular, the quadruple disruptant Δdse2Δscw11Δeaf3Δsed1 grew well in 6% lactic acid with the shortest lag phase. We then introduced an exogenous lactate dehydrogenase gene (LDH) into those single and multiple disruptants to evaluate their productivity of lactic acid. It was found that the quadruple disruptant displaying highest lactic-acid resistance showed a 27% increase of lactic-acid productivity as compared with the LDH-harboring wild-type strain. These observations suggest that disruption of multiple genes whose deletion leads to lactic-acid resistance is an effective way to enhance resistance to lactic acid, leading to high lactic-acid productivity without neutralization.


Asunto(s)
Eliminación de Gen , Ácido Láctico/biosíntesis , Saccharomyces cerevisiae/genética , Medios de Cultivo , Genes Fúngicos , Concentración de Iones de Hidrógeno , L-Lactato Deshidrogenasa/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
4.
Appl Microbiol Biotechnol ; 87(4): 1327-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20393702

RESUMEN

An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.


Asunto(s)
Diterpenos/metabolismo , Expresión Génica , Geraniltranstransferasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Geraniltranstransferasa/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Biosci Bioeng ; 108(1): 52-5, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19577192

RESUMEN

External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.


Asunto(s)
Farnesol/metabolismo , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo , Fermentación
6.
Appl Environ Microbiol ; 75(17): 5536-43, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19592534

RESUMEN

(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter(-1)) rather than GGOH (0.2 mg liter(-1)) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter(-1) GGOH and 6.5 mg liter(-1) squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter(-1) GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.


Asunto(s)
Vías Biosintéticas/genética , Diterpenos/metabolismo , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/genética , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Escualeno/metabolismo
7.
Biosci Biotechnol Biochem ; 73(1): 186-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19129660

RESUMEN

Isopentenyl diphosphate isomerase (idi) and farnesyl diphosphate synthase (ispA) genes were overexpressed in Escherichia coli. The resulting transformant showed 6.8-fold higher production of farnesol (389 microg/l). In a similar manner, overexpression of idi and mutated ispA led to high production of geranylgeraniol (128 microg/l).


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Escherichia coli/metabolismo , Geraniltranstransferasa/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Diterpenos/metabolismo , Proteínas de Escherichia coli , Farnesol/metabolismo , Geraniltranstransferasa/genética , Hemiterpenos
8.
Appl Microbiol Biotechnol ; 82(5): 837-45, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19083230

RESUMEN

To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.


Asunto(s)
Alcoholes Grasos/metabolismo , Hidroximetilglutaril-CoA Reductasas/biosíntesis , Hidroximetilglutaril-CoA Reductasas/genética , Saccharomyces cerevisiae/enzimología , Reactores Biológicos , Alcoholes Grasos/química , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Reductasas/química , Microbiología Industrial/métodos , Redes y Vías Metabólicas/genética , Ácido Mevalónico/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Terpenos/metabolismo
9.
Proc Natl Acad Sci U S A ; 105(45): 17323-7, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18978031

RESUMEN

Polylactate (PLA) is synthesized as a representative bio-based polyester by the chemo-bio process on the basis of metal catalyst-mediated chemical polymerization of lactate (LA) supplied by microbial fermentation. To establish the one-step microbial process for synthesis of LA-based polyesters, we explored whether polyhydroxyalkanoate (PHA) synthase would exhibit polymerizing activity toward a LA-coenzyme A (CoA), based on the fact that PHA monomeric constituents, especially 3-hydroxybutyrate (3HB), are structurally analogous to LA. An engineered PHA synthase was discovered as a candidate by a two-phase in vitro polymerization system previously developed. An LA-CoA producing Escherichia coli strain with a CoA transferase gene was constructed, and the generation of LA-CoA was demonstrated by capillary electrophoresis/MS analysis. Next, when the engineered PHA synthase gene was introduced into the resultant recombinant strain, we confirmed the one-step biosynthesis of the LA-incorporated copolyester, P(6 mol% LA-co-94 mol% 3HB), with a number-average molecular weight of 1.9 x 10(5), as revealed by gel permeation chromatography, gas chromatography/MS, and NMR.


Asunto(s)
Aciltransferasas/metabolismo , Coenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Láctico/biosíntesis , Aciltransferasas/genética , Cromatografía de Gases , Electroforesis Capilar , Escherichia coli/genética , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Poliésteres , Polímeros , Ingeniería de Proteínas
10.
J Biosci Bioeng ; 106(3): 263-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18930003

RESUMEN

The object of this research was improvement of prenyl alcohol production with squalene synthase-deficient mutant Saccharomyces cerevisiae ATCC 64031. On screening of many kinds of additives, we found that oils and detergents significantly enhanced the extracellular production of prenyl alcohols. Soybean oil showed the most prominent effect among the additives tested. Its effect was accelerated by a high concentration of glucose in the medium. The combination of these cultivation conditions led to the production of more than 28 mg/l of farnesol in the soluble fraction of the broth. The addition of these compounds to the medium was an effective method for large-scale production of prenyl alcohols with microorganisms.


Asunto(s)
Detergentes/farmacología , Farnesol/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Neopreno/metabolismo , Aceites de Plantas/farmacología , Saccharomyces cerevisiae/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Especificidad de la Especie
11.
Appl Microbiol Biotechnol ; 80(4): 589-95, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18636253

RESUMEN

Squalene synthase inhibitors significantly accelerate the production of farnesol by various microorganisms. However, farnesol production by Saccharomyces cerevisiae ATCC 64031, in which the squalene synthase gene is deleted, was not affected by the inhibitors, indicating that farnesol accumulation is enhanced in the absence of squalene synthase activity. The combination of diphenylamine as an inhibitor of carotenoid biosynthesis and a squalene synthase inhibitor increases geranylgeraniol production by a yeast, Rhodotorula rubra NBRC 0870. An ent-kauren synthase inhibitor also enhances the production of farnesol and geranylgeraniol by a filamentous fungus, Gibberella fujikuroi NBRC 30336. These results indicate that the inhibition of downstream enzymes from prenyl diphosphate synthase leads to the production of farnesol and geranylgeraniol.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Farnesol/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Vías Biosintéticas/efectos de los fármacos , Difenilamina/farmacología , Diterpenos/metabolismo , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Farnesil Difosfato Farnesil Transferasa/metabolismo , Hongos/enzimología , Terpenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA