Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0293861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603714

RESUMEN

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Asunto(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , Estados Unidos , Cucurbitaceae/microbiología , Cucumis melo/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Enterobacteriaceae
2.
PLoS One ; 19(4): e0297453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625898

RESUMEN

Assessing the microbes present on tree fruit carpospheres as the fruit enters postharvest processing could have useful applications, as these microbes could have a major influence on spoilage, food safety, verification of packing process controls, or other aspects of processing. The goal of this study was to establish a baseline profile of bacterial communities associated with apple (pome fruit), peach (stone fruit), and Navel orange (citrus fruit) at harvest. We found that commercial peaches had the greatest bacterial richness followed by oranges then apples. Time of harvest significantly changed bacterial diversity in oranges and peaches, but not apples. Shifts in diversity varied by fruit type, where 70% of the variability in beta diversity on the apple carposphere was driven by the gain and loss of species (i.e., nestedness). The peach and orange carposphere bacterial community shifts were driven by nearly an even split between turnover (species replacement) and nestedness. We identified a small core microbiome for apples across and between growing seasons that included only Methylobacteriaceae and Sphingomonadaceae among the samples, while peaches had a larger core microbiome composed of five bacterial families: Bacillaceae, Geodermtophilaceae, Nocardioidaceae, Micrococcaeceae, and Trueperaceae. There was a relatively diverse core microbiome for oranges that shared all the families present on apples and peaches, except for Trueperaceae, but also included an additional nine bacterial families not shared including Oxalobacteraceae, Cytophagaceae, and Comamonadaceae. Overall, our findings illustrate the important temporal dynamics of bacterial communities found on major commercial tree fruit, but also the core bacterial families that constantly remain with both implications being important entering postharvest packing and processing.


Asunto(s)
Citrus sinensis , Prunus persica , Humanos , Estaciones del Año , Bacterias , Citrus sinensis/microbiología , Frutas/microbiología
3.
Environ Monit Assess ; 195(11): 1398, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910273

RESUMEN

As climate change strains the world's freshwater resources, access to safe and clean water becomes limited. The use of alternative water sources, such as rooftop-harvested rainwater, has become one mechanism to address freshwater scarcity in the American Southwest, particularly when it comes to home gardening. The University of Arizona's Project Harvest, in partnership with the Sonora Environmental Research Institute, Inc., is a multi-year, co-created citizen science project aimed at increasing current understanding of harvested rainwater quality. Citizens in four Arizona, USA, communities (Hayden/Winkelman, Globe/Miami, Dewey-Humboldt, and Tucson) submitted harvested rainwater samples over 3 years. The harvested rainwater samples were then analyzed using IDEXX Colilert® for total coliforms and E. coli and using Hach PathoScreen™ test for sulfate-reducing bacteria (SRB). This study design allows for the validation of a low-cost, at-home alternative methodology for testing rainwater for bacteria that may indicate fecal contamination. In total, 226 samples were tested using both methodologies, revealing a positive correlation (r=0.245; p<0.002) between total coliform MPN and SRB MPN, but no discernable correlation between E. coli MPN and SRB MPN. This work indicates a potential value of SRB testing for harvested rainwater if cost, laboratory access, and fecal contamination are of concern.


Asunto(s)
Sulfuro de Hidrógeno , Abastecimiento de Agua , Monitoreo del Ambiente/métodos , Escherichia coli , Lluvia , Agua , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...