Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mech Ageing Dev ; 197: 111510, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019916

RESUMEN

Progressive loss of muscle mass and function due to muscle fiber atrophy and loss in the elderly and chronically ill is now defined as sarcopenia. It is a major contributor to loss of independence, disability, need of long-term care as well as overall mortality. Sarcopenia is a heterogenous disease and underlying mechanisms are not completely understood. Here, we newly identified and used Tmem158, alongside Cdkn1a, as relevant senescence and denervation markers (SDMs), associated with muscle fiber atrophy. Subsequent application of laser capture microdissection (LCM) and RNA analyses revealed age- and disease-associated differences in gene expression and alternative splicing patterns in a rodent sarcopenia model. Of note, genes exhibiting such differential alternative splicing (DAS) are mainly involved in the contractile function of the muscle. Many of these splicing events are also found in a mouse model for myotonic dystrophy type 1 (DM1), underscoring the premature aging phenotype of this disease. We propose to add differential alternative splicing to the hallmarks of aging.


Asunto(s)
Envejecimiento/metabolismo , Empalme Alternativo , Músculo Esquelético/metabolismo , Distrofia Miotónica/metabolismo , Receptores de Superficie Celular/biosíntesis , Sarcopenia/metabolismo , Envejecimiento/patología , Animales , Senescencia Celular , Modelos Animales de Enfermedad , Masculino , Músculo Esquelético/patología , Ratas , Ratas Sprague-Dawley
2.
Cell Rep ; 30(7): 2321-2331.e6, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075766

RESUMEN

Mitochondrial Ca2+ uptake depends on the mitochondrial calcium uniporter (MCU) complex, a highly selective channel of the inner mitochondrial membrane (IMM). Here, we screen a library of 44,000 non-proprietary compounds for their ability to modulate mitochondrial Ca2+ uptake. Two of them, named MCU-i4 and MCU-i11, are confirmed to reliably decrease mitochondrial Ca2+ influx. Docking simulations reveal that these molecules directly bind a specific cleft in MICU1, a key element of the MCU complex that controls channel gating. Accordingly, in MICU1-silenced or deleted cells, the inhibitory effect of the two compounds is lost. Moreover, MCU-i4 and MCU-i11 fail to inhibit mitochondrial Ca2+ uptake in cells expressing a MICU1 mutated in the critical amino acids that forge the predicted binding cleft. Finally, these compounds are tested ex vivo, revealing a primary role for mitochondrial Ca2+ uptake in muscle growth. Overall, MCU-i4 and MCU-i11 represent leading molecules for the development of MICU1-targeting drugs.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Células HeLa , Humanos , Modelos Moleculares
3.
ChemMedChem ; 13(15): 1566-1579, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29856125

RESUMEN

Imaging T cells using positron emission tomography (PET) would be highly useful for diagnosis and monitoring in immunology and oncology patients. There are, however, no obvious targets that can be used to develop imaging agents for this purpose. We evaluated several potential target proteins with selective expression in T cells, and for which lead molecules were available: protein kinase C isozyme θ (PKC θ), lymphocyte-specific protein tyrosine kinase (Lck), zeta-chain-associated protein kinase 70 (ZAP70), and interleukin-2-inducible T-cell kinase (Itk). Ultimately, we focused on Itk and identified a tool molecule with properties suitable for in vivo imaging of T cells: (5aR)-5,5-difluoro-5a-methyl-N-(1-((S)-3-(methylsulfonyl)phenyl)(tetrahydro-2H-pyran-4-yl)methyl)-1H-pyrazol-4-yl)-1,4,4a,5,5a,6-hexahydrocyclopropa[f]indazole-3-carboxamide (23). Although it does not have the optimal profile for clinical use, this molecule indicates that it might be possible to develop Itk-selective PET ligands for imaging the distribution of T cells in patients.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Linfocitos T/metabolismo , Animales , Encéfalo/metabolismo , Inhibidores Enzimáticos/metabolismo , Estudios de Factibilidad , Humanos , Ligandos , Ratones , Proteínas Tirosina Quinasas/metabolismo , Bazo/diagnóstico por imagen
4.
J Biol Chem ; 293(30): 11837-11849, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29899111

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is among the most prevalent of the adult-onset muscular dystrophies. FSHD causes a loss of muscle mass and function, resulting in severe debilitation and reduction in quality of life. Currently, only the symptoms of FSHD can be treated, and such treatments have minimal benefit. The available options are not curative, and none of the treatments address the underlying cause of FSHD. The genetic, epigenetic, and molecular mechanisms triggering FSHD are now quite well-understood, and it has been shown that expression of the transcriptional regulator double homeobox 4 (DUX4) is necessary for disease onset and is largely thought to be the causative factor in FSHD. Therefore, we sought to identify compounds suppressing DUX4 expression in a phenotypic screen using FSHD patient-derived muscle cells, a zinc finger and SCAN domain-containing 4 (ZSCAN4)-based reporter gene assay for measuring DUX4 activity, and ∼3,000 small molecules. This effort identified molecules that reduce DUX4 gene expression and hence DUX4 activity. Among those, ß2-adrenergic receptor agonists and phosphodiesterase inhibitors, both leading to increased cellular cAMP, effectively decreased DUX4 expression by >75% in cells from individuals with FSHD. Of note, we found that cAMP production reduces DUX4 expression through a protein kinase A-dependent mode of action in FSHD patient myotubes. These findings increase our understanding of how DUX4 expression is regulated in FSHD and point to potential areas of therapeutic intervention.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Activación Enzimática , Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Agonistas Adrenérgicos beta/farmacología , Células Cultivadas , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Descubrimiento de Drogas , Activación Enzimática/efectos de los fármacos , Humanos , Fibras Musculares Esqueléticas/efectos de los fármacos , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Distrofia Muscular Facioescapulohumeral/metabolismo
5.
Bioorg Med Chem ; 25(16): 4512-4525, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28689977

RESUMEN

GPR4, a G-protein coupled receptor, functions as a proton sensor being activated by extracellular acidic pH and has been implicated in playing a key role in acidosis associated with a variety of inflammatory conditions. An orally active GPR4 antagonist 39c was developed, starting from a high throughput screening hit 1. The compound shows potent cellular activity and is efficacious in animal models of angiogenesis, inflammation and pain.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Diseño de Fármacos , Inflamación/tratamiento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Administración Oral , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Artritis/tratamiento farmacológico , Artritis/metabolismo , Células COS , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Células HeLa , Humanos , Inflamación/metabolismo , Ratones , Estructura Molecular , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
6.
J Med Chem ; 60(9): 3672-3683, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28445047

RESUMEN

A novel, selective, and efficacious GPR4 antagonist 13 was developed starting from lead compound 1a. While compound 1a showed promising efficacy in several disease models, its binding to a H3 receptor as well as a hERG channel prevented it from further development. Therefore, a new round of optimization addressing the key liabilities was performed and led to discovery of compound 13 with an improved profile. Compound 13 showed significant efficacy in the rat antigen induced arthritis as well as in the hyperalgesia and angiogenesis model at a well-tolerated dose of 30 mg/kg.


Asunto(s)
Inflamación/prevención & control , Neovascularización Fisiológica/efectos de los fármacos , Nocicepción/efectos de los fármacos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Administración Oral , Animales , Diseño de Fármacos , Femenino , Células HEK293 , Humanos , Ratas , Ratas Sprague-Dawley , Receptores Histamínicos H3/metabolismo
7.
J Med Chem ; 57(12): 5074-84, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24809814

RESUMEN

Sphingosine 1-phosphate (S1P) lyase has recently been implicated as a therapeutic target for the treatment of multiple sclerosis (MS), based on studies in a genetic mouse model. Potent active site directed inhibitors of the enzyme are not known so far. Here we describe the discovery of (4-benzylphthalazin-1-yl)-2-methylpiperazin-1-yl]nicotinonitrile 5 in a high-throughput screen using a biochemical assay, and its further optimization. This class of compounds was found to inhibit catalytic activity of S1PL by binding to the active site of the enzyme, as seen in the cocrystal structure of derivative 31 with the homodimeric human S1P lyase. 31 induces profound reduction of peripheral T cell numbers after oral dosage and confers pronounced protection in a rat model of multiple sclerosis. In conclusion, this novel class of direct S1P lyase inhibitors provides excellent tools to further explore the therapeutic potential of T cell-targeted therapies in multiple sclerosis and other autoimmune and inflammatory diseases.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Esclerosis Múltiple/tratamiento farmacológico , Ftalazinas/química , Piridinas/química , Administración Oral , Aldehído-Liasas/química , Aldehído-Liasas/genética , Animales , Dominio Catalítico , Células Cultivadas , Cristalografía por Rayos X , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/enzimología , Femenino , Humanos , Masculino , Modelos Moleculares , Esclerosis Múltiple/enzimología , Mutación , Ftalazinas/farmacocinética , Ftalazinas/farmacología , Conformación Proteica , Piridinas/farmacocinética , Piridinas/farmacología , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad
8.
Mol Pharmacol ; 74(4): 925-32, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18612076

RESUMEN

Ceramide kinase (CerK) produces the bioactive lipid ceramide-1-phosphate (C1P) and appears as a key enzyme for controlling ceramide levels. In this study, we discovered and characterized adamantane-1-carboxylic acid (2-benzoylamino-benzothiazol-6-yl)amide (NVP-231), a potent, specific, and reversible CerK inhibitor that competitively inhibits binding of ceramide to CerK. NVP-231 is active in the low nanomolar range on purified as well as cellular CerK and abrogates phosphorylation of ceramide, resulting in decreased endogenous C1P levels. When combined with another ceramide metabolizing inhibitor, such as tamoxifen, NVP-231 synergistically increased ceramide levels and reduced cell growth. Therefore, NVP-231 represents a novel and promising compound for controlling ceramide metabolism that may provide insight into CerK physiological function.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Animales , Baculoviridae/genética , Células COS , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Humanos , Concentración 50 Inhibidora , Luciferasas/metabolismo , Luminiscencia , Macrófagos Peritoneales/efectos de los fármacos , Mastocitos/efectos de los fármacos , Ratones , Estructura Molecular , Peso Molecular , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Ensayo de Unión Radioligante , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Spodoptera/citología , Spodoptera/metabolismo , Relación Estructura-Actividad
9.
Mol Pharmacol ; 71(6): 1657-65, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17369307

RESUMEN

The cyclopeptolide CAM741 inhibits cotranslational translocation of vascular cell adhesion molecule 1 (VCAM1), which is dependent on its signal peptide. We now describe the identification of the signal peptide of vascular endothelial growth factor (VEGF) as the second target of CAM741. The mechanism by which the compound inhibits translocation of VEGF is very similar or identical to that of VCAM1, although the signal peptides share no obvious sequence similarities. By mutagenesis of the VEGF signal peptide, two important regions, located in the N-terminal and hydrophobic segments, were identified as critical for compound sensitivity. CAM741 alters positioning of the VEGF signal peptide at the translocon, and increasing hydrophobicity in the h-region reduces compound sensitivity and causes a different, possibly more efficient, interaction with the translocon. Although CAM741 is effective against translocation of both VEGF and VCAM1, the derivative NFI028 is able to inhibit only VCAM1, suggesting that chemical derivatization can alter not only potency, but also the specificity of the compounds.


Asunto(s)
Péptidos Cíclicos/farmacología , Señales de Clasificación de Proteína/efectos de los fármacos , Translocación Genética/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Humanos , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Péptidos Cíclicos/química , Señales de Clasificación de Proteína/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Translocación Genética/fisiología
10.
J Biol Chem ; 281(41): 30492-502, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16914554

RESUMEN

The cyclopeptolide CAM741 selectively inhibits cotranslational translocation of vascular cell adhesion molecule 1 (VCAM1), a process that is dependent on its signal peptide. In this study we identified the C-terminal (C-) region upstream of the cleavage site of the VCAM1 signal peptide as most critical for inhibition of translocation by CAM741, but full sensitivity to the compound also requires residues of the hydrophobic (h-) region and the first amino acid of the VCAM1 mature domain. The murine VCAM1 signal peptide, which is less susceptible to translocation inhibition by CAM741, can be converted into a fully sensitive signal peptide by two amino acid substitutions identified as critical for compound sensitivity of the human VCAM1 signal peptide. Using cysteine substitutions of non-critical residues in the human VCAM1 signal peptide and chemical cross-linking of targeted short nascent chains we show that, in the presence of CAM741, the N- and C-terminal segments of the VCAM1 signal peptide could be cross-linked to the cytoplasmic tail of Sec61beta, indicating altered positioning of the VCAM1 signal peptide relative to this translocon component. Moreover, translocation of a tag fused N-terminal to the VCAM1 signal peptide is selectively inhibited by CAM741. Our data indicate that the compound inhibits translocation of VCAM1 by interfering with correct insertion of its signal peptide into the translocon.


Asunto(s)
Péptidos Cíclicos/farmacología , Señales de Clasificación de Proteína , Molécula 1 de Adhesión Celular Vascular/química , Secuencia de Aminoácidos , Animales , Línea Celular , Reactivos de Enlaces Cruzados/farmacología , Cisteína/química , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido
11.
Nature ; 436(7048): 290-3, 2005 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16015337

RESUMEN

Increased expression of vascular cell adhesion molecule 1 (VCAM1) is associated with a variety of chronic inflammatory conditions, making its expression and function a target for therapeutic intervention. We have recently identified CAM741, a derivative of a fungus-derived cyclopeptolide that acts as a selective inhibitor of VCAM1 synthesis in endothelial cells. Here we show that the compound represses the biosynthesis of VCAM1 in cells by blocking the process of cotranslational translocation, which is dependent on the signal peptide of VCAM1. CAM741 does not inhibit targeting of the VCAM1 nascent chains to the translocon channel but prevents translocation to the luminal side of the endoplasmic reticulum (ER), through a process that involves the translocon component Sec61beta. Consequently, the VCAM1 precursor protein is synthesized towards the cytosolic compartment of the cells, where it is degraded. Our results indicate that the inhibition of cotranslational translocation with low-molecular-mass compounds, using specificity conferred by signal peptides, can modulate the biosynthesis of certain secreted and/or membrane proteins. In addition, they highlight cotranslational translocation at the ER membrane as a potential target for drug discovery.


Asunto(s)
Retículo Endoplásmico/metabolismo , Péptidos Cíclicos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Molécula 1 de Adhesión Celular Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Péptidos Cíclicos/química , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC , Sensibilidad y Especificidad , Eliminación de Secuencia , Especificidad por Sustrato , Transfección , Molécula 1 de Adhesión Celular Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...