Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Med Educ ; 24(1): 453, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664702

RESUMEN

BACKGROUND: The qualities of trainees play a key role in entrustment decisions by clinical supervisors for the assignments of professional tasks and levels of supervision. A recent body of qualitative research has shown that in addition to knowledge and skills, a number of personality traits are relevant in the workplace; however, the relevance of these traits has not been investigated empirically. The aim of this study was to analyse the workplace performance of final-year medical students using an Entrustable Professional Activity (EPA) framework in relation to their personality traits. METHODS: Medical students at the end of their final clerkship year were invited to participate in an online survey-based, cross-sectional field study. In the survey, the workplace performance was captured using a framework consisting of levels of experienced supervision and a defined set of 12 end-of-undergraduate medical training EPAs. The Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness) of the participating medical students were measured using the Big Five Inventory-SOEP (BFI-S), which consists of 15 items that are rated on a seven-point Likert scale. The data were analysed using descriptive and inferential statistics. RESULTS: The study included 880 final-year medical students (mean age: 27.2 years, SD = 3.0; 65% female). The levels of supervision under which the final-year clerkship students carried out the EPAs varied considerably. Significant correlations were found between the levels of experienced supervision and all Big Five dimensions The correlations with the dimensions of extraversion, agreeableness, conscientiousness and openness were positive, and that for the neuroticism dimension was negative (range r = 0.17 to r = - 0.23). Multiple regression analyses showed that the combination of the Big Five personality traits accounted for 0.8-7.5% of the variance in supervision levels on individual EPAs. CONCLUSIONS: Using the BFI-S, we found that the levels of supervision on a set of end-of-undergraduate medical training EPAs were related to the personality traits of final-year medical students. The results of this study confirm the existing body of research on the role of conscientiousness and extraversion in entrustment decision-making and, in particular, add the personality trait of neuroticism as a new and relevant trainee quality to be considered.


Asunto(s)
Prácticas Clínicas , Personalidad , Estudiantes de Medicina , Lugar de Trabajo , Humanos , Estudiantes de Medicina/psicología , Femenino , Estudios Transversales , Masculino , Adulto , Lugar de Trabajo/psicología , Competencia Clínica , Educación de Pregrado en Medicina , Adulto Joven , Encuestas y Cuestionarios , Inventario de Personalidad
2.
iScience ; 27(1): 108674, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38292166

RESUMEN

Termite-built topology is complex due to group interactions and environmental feedback. Being interlinked with material characteristics and related to functionality, an accurate synthesis of termite mound topology has never been achieved. We scanned inner termite mound pieces via high-resolution micro-computed tomography. A wavelet scattering transform followed by optimization extracts features that are fed into a Gaussian Random Fields (GRFs) approach to synthesize termite-mimetic spinodal topology. Compared to natural structures the GRF topology is more regular. Irregularity is related to anisotropy, indicative of directionality caused by porous network connectivity of chambers and corridors. Since GRFs are related to diffusion, we assume that deterministic behavioral traits play a significant role in the development of these local differences. We pioneer a framework to reliably mimic termite mound spinodal features. Engineering termite-inspired structures will allow to inspect aspects of termite architectures and their behavior to manufacture novel material concepts with imprinted multi-functionality.

3.
Nat Commun ; 14(1): 6847, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891166

RESUMEN

Quasi-bound states in the continuum (QBICs) coupling into the propagating spectrum manifest themselves as high-quality factor (Q) modes susceptible to perturbations. This poses a challenge in predicting stable Fano resonances for realistic applications. Besides, where and when the maximum field enhancement occurs in real acoustic devices remains elusive. In this work, we theoretically predict and experimentally demonstrate the existence of a Friedrich-Wintgen BIC in an open acoustic cavity. We provide direct evidence for a QBIC by mapping the pressure field inside the cavity using a Laser Doppler Vibrometer (LDV), which provides the missing field enhancement data. Furthermore, we design a symmetry-reduced BIC and achieve field enhancement by a factor of about three compared to the original cavity. LDV measurements are a promising technique for obtaining high-Q modes' missing field enhancement data. The presented results facilitate the future applications of BICs in acoustics as high-intensity sound sources, filters, and sensors.

4.
PeerJ ; 11: e16083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842048

RESUMEN

A decision model is developed by adopting two control techniques, combining cultural methods and pesticides in a hybrid approach. To control the adverse effects in the long term and to be able to evaluate the extensive use of pesticides on the environment and nearby ecosystems, the novel decision model assumes the use of pesticides only in an emergency situation. We, therefore, formulate a rice-pest-control model by rigorously modelling a rice-pest system and including the decision model and control techniques. The model is then extended to become an optimal control system with an objective function that minimizes the annual losses of rice by controlling insect pest infestations and simultaneously reduce the adverse impacts of pesticides on the environment and nearby ecosystems. This rice-pest-control model is verified by analysis, obtains the necessary conditions for optimality, and confirms our main results numerically. The rice-pest system is verified by stability analysis at equilibrium points and shows transcritical bifurcations indicative of acceptable thresholds for insect pests to demonstrate the pest control strategy.


Asunto(s)
Infestaciones Ectoparasitarias , Oryza , Plaguicidas , Animales , Ecosistema , Control de Plagas/métodos , Plaguicidas/toxicidad , Insectos
5.
J Acoust Soc Am ; 154(2): 842-851, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566720

RESUMEN

Arrangements of acoustic meta-atoms, better known as acoustic metamaterials, are commonly applied in acoustic cloaking, for the attenuation of acoustic fields or for acoustic focusing. A precise design of single meta-atoms is required for these purposes. Understanding the details of their interaction allows improvement of the collective performance of the meta-atoms as a system, for example, in sound attenuation. Destructive interference of their scattered fields, for example, can be mitigated by adjusting the coupling or tuning of individual meta-atoms. Comprehensive numerical studies of various configurations of a resonator pair show that the coupling can lead to degenerate modes at periodic distances between the resonators. We show how the resonators' separation and relative orientation influence the coupling and thereby tunes the sound attenuation. The simulation results are supported by experiments using a two-dimensional parallel-plate waveguide. It is shown that coupling parameters like distance, orientation, detuning, and radiation loss provide additional degrees of freedom for efficient acoustic meta-atom tuning to achieve unprecedented interactions with excellent sound attenuation properties.

6.
Molecules ; 28(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36903366

RESUMEN

Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.


Asunto(s)
Bombyx , Fibroínas , Arañas , Animales , Animales Modificados Genéticamente , Elasticidad , Arañas/química , Fibroínas/química
7.
Sensors (Basel) ; 22(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502060

RESUMEN

Laser Doppler vibrometers (LDVs) have been widely adopted due to their large number of benefits in comparison to traditional contacting vibration transducers. Their high sensitivity, among other unique characteristics, has also led to their use as optical microphones, where the measurement of object vibration in the vicinity of a sound source can act as a microphone. Recent work enabling full correction of LDV measurement in the presence of sensor head vibration unlocks new potential applications, including integration within autonomous vehicles (AVs). In this paper, the common AV challenge of object classification is addressed by presenting and evaluating a novel, non-contact vibro-acoustic object recognition technique. This technique utilises a custom set-up involving a synchronised loudspeaker and scanning LDV to simultaneously remotely solicit and record responses to a periodic chirp excitation in various objects. The 864 recorded signals per object were pre-processed into spectrograms of various forms, which were used to train a ResNet-18 neural network via transfer learning to accurately recognise the objects based only on their vibro-acoustic characteristics. A five-fold cross-validation optimisation approach is described, through which the effects of data set size and pre-processing type on classification accuracy are assessed. A further assessment of the ability of the CNN to classify never-before-seen objects belonging to groups of similar objects on which it has been trained is then described. In both scenarios, the CNN was able to obtain excellent classification accuracy of over 99.7%. The work described here demonstrates the significant promise of such an approach as a viable non-contact object recognition technique suitable for various machine automation tasks, for example, defect detection in production lines or even loose rock identification in underground mines.


Asunto(s)
Acústica , Redes Neurales de la Computación , Ultrasonografía Doppler , Angiografía , Rayos Láser
8.
Phys Rev Lett ; 129(17): 174501, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332239

RESUMEN

Acoustic meta-atoms serve as the building blocks of metamaterials, with linear properties designed to achieve functions such as beam steering, cloaking, and focusing. They have also been used to shape the characteristics of incident acoustic fields, which led to the manipulation of acoustic radiation force and torque for development of acoustic tweezers with improved spatial resolution. However, acoustic radiation force and torque also depend on the shape of the object, which strongly affects its scattering properties. We show that by designing linear properties of an object using metamaterial concepts, the nonlinear acoustic effects of radiation force and torque can be controlled. Trapped objects are typically small compared with the wavelength, and are described as particles, inducing monopole and dipole scattering. We extend such models to a polarizability tensor including Willis coupling terms, as a measure of asymmetry, capturing the significance of geometrical features. We apply our model to a three-dimensional, subwavelength meta-atom with maximal Willis coupling, demonstrating that the force and the torque can be reversed relative to an equivalent symmetrical particle. By considering shape asymmetry in the acoustic radiation force and torque, Gorkov's fundamental theory of acoustophoresis is thereby extended. Asymmetrical shapes influence the acoustic fields by shifting the stable trapping location, highlighting a potential for tunable, shape-dependent particle sorting.


Asunto(s)
Acústica , Torque
9.
Lab Chip ; 22(18): 3290-3313, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35969199

RESUMEN

The motion of small objects in acoustophoresis depends on the acoustic radiation force and torque. These are nonlinear phenomena originating from wave scattering, and consist of primary and secondary components. The primary radiation force is the force acting on an object due to the incident field, in the absence of other objects. The secondary component, known as acoustic interaction force, accounts for the interaction among objects, and contributes to the clustering patterns of objects, as commonly observed in experiments. In this tutorial, the theory of acoustic interaction forces is presented using the force potential and partial-wave expansion approaches, and the distinguishing features of these forces such as rotational coupling and non-reciprocity are described. Theoretical results are compared to experimental measurements of interaction forces using a glass micro-capillary setup to explain the practical challenges. Finally, the phenomenon of clustering patterns induced by the close-range interaction of objects is demonstrated to point out the considerations about multiple collision and the predicted clustering patterns entirely due to the interaction force. Understanding the principles of acoustic interaction enables us to develop novel acoustofluidic applications beyond the typical processing of large populations of particles and with focus on the controlled manipulation of small clusters.


Asunto(s)
Acústica , Fenómenos Mecánicos , Movimiento (Física) , Torque
10.
Arthropod Struct Dev ; 70: 101191, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816830

RESUMEN

Termites sense tiny substrate-borne vibrations through subgenual organs (SGOs) located within their legs' tibiae. Little is known about the SGOs' structure and physical properties. We applied high-resolution (voxel size 0.45 µm) micro-computed tomography (µCT) to Australian termites, Coptotermes lacteus and Nasutitermes exitiosus (Hill) to test two staining techniques. We compared the effectiveness of a single stain of Lugol's iodine solution (LS) to LS followed by Phosphotungstic acid (PTA) solutions (1% and 2%). We then present results of a soldier of Nasutitermes exitiosus combining µCT with LS + 2%PTS stains and scanning electron microscopy to exemplify the visualisation of their SGOs. The termite's SGO due to its approximately oval shape was shown to have a maximum diameter of 60 µm and a minimum of 48 µm, covering 60 ± 4% of the leg's cross-section and 90.4 ± 5% of the residual haemolymph channel. Additionally, the leg and residual haemolymph channel cross-sectional area decreased around the SGO by 33% and 73%, respectively. We hypothesise that this change in cross-sectional area amplifies the vibrations for the SGO. Since SGOs are directly connected to the cuticle, their mechanical properties and the geometric details identified here may enable new approaches to determine how termites sense micro-vibrations.


Asunto(s)
Isópteros , Animales , Australia , Vibración , Microtomografía por Rayos X
11.
BMC Med Educ ; 22(1): 250, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387637

RESUMEN

BACKGROUND: Acquiring medical knowledge is a key competency for medical students and a lifelong requirement for physicians. Learning techniques can improve academic success and help students cope with stressors. To support students' learning process medical faculties should know about learning techniques. The purpose of this study is to analyse the preferred learning techniques of female and male as well as junior and senior medical students and how these learning techniques are related to perceived learning difficulties. METHODS: In 2019, we conducted an online survey with students of the undergraduate, competency-based curriculum of medicine at Charité - Universitätsmedizin Berlin. We chose ten learning techniques of high, moderate and low utility according to Dunlosky et al. (2013) and we asked medical students to rate their preferred usage of those techniques using a 5-point Likert scale. We applied t-tests to show differences in usage between female and male as well as junior and senior learners. Additionally, we conducted a multiple regression analysis to explore the predictive power of learning techniques regarding perceived difficulties. RESULTS: A total of 730 medical students (488 women, 242 men, Mage = 24.85, SD = 4.49) use three techniques the most: 'highlighting' (low utility), 'self-explanation' (moderate utility) and 'practice testing' (high utility). Female students showed a significantly higher usage of low-utility learning techniques (t(404.24) = -7.13, p < .001) and a higher usage of high-utility learning techniques (t(728) = -2.50, p < .05) than male students (M = 3.55, SD = .95). Compared to junior students (second to sixth semester; M = 3.65, SD = .71), senior students (seventh semester to final clerkship year; M = 3.52, SD = .73) showed a lower use of low-utility learning techniques (t(603) = 2.15, p < .05). Usage of low-utility techniques is related to more difficulties (ß = .08, t(724) = 2.13, p < .05). Usage of moderate-utility techniques is related to less learning difficulties (ß = -.13, t(599) = -3.21, p < .01). CONCLUSIONS: Students use a wide range of low-, moderate- and high-utility learning techniques. The use of learning techniques has an influence on the difficulties perceived by students. Therefore, they could benefit from knowing about and using high-utility learning techniques to facilitate their learning. Faculties should inform their students about effective learning and introduce them to useful learning techniques.


Asunto(s)
Educación de Pregrado en Medicina , Estudiantes de Medicina , Adulto , Competencia Clínica , Curriculum , Educación de Pregrado en Medicina/métodos , Femenino , Humanos , Aprendizaje , Masculino , Adulto Joven
12.
ISA Trans ; 129(Pt A): 675-686, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34974910

RESUMEN

Operating deflection shape analysis allows investigating the dynamic behaviour of a structure during operation. It normally requires simultaneous, multi-point measurements to capture the response from an unknown excitation source (unknown-input and multiple-output), which can complicate its usage for structures without ease of access. A novel vibration pattern testing method is proposed based on a roving continuous random excitation employing a small robotic Hexbug device and a single-point measurement. The Hexbug introduces a random excitation in consecutive locations while roaming over the structure. The resulting multi-modal, time and location dependent response of the system is captured in a single location, and then analysed with a newly developed method based on empirical wavelet transform, multiscale morphological filtering and optimization to extract the excited vibration patterns. The efficiency of the proposed method is experimentally demonstrated on a free-free and a cantilevered beam with comparison to mode shapes extracted by hammer test. The validation highlights its ability to extract several vibration patterns from a long slender structure with good accuracy and robustness, with the general ability to expand the usability of an operating deflecting shape analysis.

13.
J R Soc Interface ; 18(178): 20200957, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947222

RESUMEN

Termites inhabit complex underground mounds of intricate stigmergic labyrinthine designs with multiple functions as nursery, food storage and refuge, while maintaining a homeostatic microclimate. Past research studied termite building activities rather than the actual material structure. Yet, prior to understanding how multi-functionality shaped termite building, a thorough grasp of submillimetre mechanistic architecture of mounds is required. Here, we identify for Nasutitermes exitiosus via granulometry and Fourier transform infrared spectroscopy analysis, preferential particle sizes related to coarse silts and unknown mixtures of organic/inorganic components. High-resolution micro-computed X-ray tomography and microindentation tests reveal wall patterns of filigree laminated layers and sub-millimetre porosity wrapped around a coarse-grained inner scaffold. The scaffold geometry, which is designed of a lignin-based composite and densely biocementitious stercoral mortar, resembles that of trabecula cancellous bones. Fractal dimension estimates indicate multi-scaled porosity, important for enhanced evaporative cooling and structural stability. The indentation moduli increase from the outer to the inner wall parts to values higher than those found in loose clays and which exceed locally the properties of anthropogenic cementitious materials. Termites engineer intricately layered biocementitious composites of high elasticity. The multiple-scales and porosity of the structure indicate a potential to pioneer bio-architected lightweight and high-strength materials.


Asunto(s)
Isópteros , Animales , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
14.
Phys Rev E ; 104(6-2): 065003, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030931

RESUMEN

Acoustophoresis mainly deals with the manipulation of subwavelength scatterers in an incident acoustic field. The geometric details of manipulated particles are often neglected by replacing them with equivalent symmetric geometries such as spheres, spheroids, cylinders, or disks. It has been demonstrated that geometric asymmetry, represented by Willis coupling terms, can strongly affect the scattering of a small object; hence neglecting these terms may miss important force contributions. In this work, we present a generalized formalism of acoustic radiation force and radiation torque based on the polarizability tensor, where Willis coupling terms are included to account for geometric asymmetry. Following Gorkov's approach, the effects of geometric asymmetry are explicitly formulated as additional terms in the radiation force and torque expressions. By breaking the symmetry of a sphere along one axis using intrusion and protrusion, we characterize the changes in the force and torque in terms of partial components, associated with the direct and Willis coupling coefficients of the polarizability tensor. We investigate the cases of standing and traveling plane waves and show how the equilibrium positions and angles are shifted by these additional terms. We show that while the contributions of asymmetry to the force are often negligible for small particles, these terms greatly affect the radiation torque. Our presented theory, providing a way of calculating radiation force and torque directly from polarizability coefficients, shows that it is essential to account for shape of objects undergoing acoustophoretic manipulation, with important implications for applications such as the manipulation of biological cells.

15.
Comput Struct Biotechnol J ; 18: 2522-2534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005314

RESUMEN

Termite mounds are fascinating because of their intriguing composition of numerous geometric shapes and materials. However, little is known about these structures, or of their functionalities. Most research has been on the basic composition of mounds compared with surrounding soils. There has been some targeted research on the thermoregulation and ventilation of the mounds of a few species of fungi-growing termites, which has generated considerable interest from human architecture. Otherwise, research on termite mounds has been scattered, with little work on their explicit properties. This review is focused on how termites design and build functional structures as nest, nursery and food storage; for thermoregulation and climatisation; as defence, shelter and refuge; as a foraging tool or building material; and for colony communication, either as in indirect communication (stigmergy) or as an information channel essential for direct communication through vibrations (biotremology). Our analysis shows that systematic research is required to study the properties of these structures such as porosity and material composition. High resolution computer tomography in combination with nonlinear dynamics and methods from computational intelligence may provide breakthroughs in unveiling the secrets of termite behaviour and their mounds. In particular, the examination of dynamic and wave propagation properties of termite-built structures in combination with a detailed signal analysis of termite activities is required to better understand the interplay between termites and their nest as superorganism. How termite structures serve as defence in the form of disguising acoustic and vibration signals from detection by predators, and what role local and global vibration synchronisation plays for building are open questions that need to be addressed to provide insights into how termites utilise materials to thrive in a world of predators and competitors.

16.
J Acoust Soc Am ; 147(3): 1491, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32237831

RESUMEN

Noise mitigation of stage machinery can be quite demanding and requires innovative solutions. In this work, an acoustic metamaterial capsule is proposed to reduce the noise emission of several stage machinery drive trains, while still allowing the ventilation required for cooling. The metamaterial capsule consists of c-shape meta-atoms, which have a simple structure that facilitates manufacturing. Two different metamaterial capsules are designed, simulated, manufactured, and experimentally validated that utilize an ultra-sparse and air-permeable reflective meta-grating. Both designs demonstrate transmission loss peaks that effectively suppress gear mesh noise or other narrow band noise sources. The ventilation by natural convection was numerically verified, and was shown to give adequate cooling, whereas a conventional sound capsule would lead to overheating. The noise spectra of three common stage machinery drive trains are numerically modelled, enabling one to design meta-gratings and determine their noise suppression performance. The results fulfill the stringent stage machinery noise limits, highlighting the benefit of using metamaterial capsules of simple c-shape structure.

17.
Nat Commun ; 10(1): 3148, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316062

RESUMEN

Acoustic metamaterials are structures with exotic acoustic properties, with promising applications in acoustic beam steering, focusing, impedance matching, absorption and isolation. Recent work has shown that the efficiency of many acoustic metamaterials can be enhanced by controlling an additional parameter known as Willis coupling, which is analogous to bianisotropy in electromagnetic metamaterials. The magnitude of Willis coupling in a passive acoustic meta-atom has been shown theoretically to have an upper limit, however the feasibility of reaching this limit has not been experimentally investigated. Here we introduce a meta-atom with Willis coupling which closely approaches this theoretical limit, that is much simpler and less prone to thermo-viscous losses than previously reported structures. We perform two-dimensional experiments to measure the strong Willis coupling, supported by numerical calculations. Our meta-atom geometry is readily modeled analytically, enabling the strength of Willis coupling and its peak frequency to be easily controlled.

18.
Biol Lett ; 15(7): 20190365, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31288680

RESUMEN

Animals use cues to find their food, in microhabitats within their physiological tolerances. Termites build and modify their microhabitat, to transform hostile environments into benign ones, which raises questions about the relative importance of cues. Termites are desiccation intolerant and foraging termites are attracted to water, so most research has considered moisture to be a cue. However, termites can also transport water to food, and so moisture may play other roles than previously considered. To examine the role of moisture, we compared Coptotermes acinaciformis termite foraging decisions in laboratory experiments when they were offered dry and moist wood, with and without load. Without load, termites preferred moist wood and ate it without any building, whereas they moistened dry wood after wrapping it in a layer of clay. For the 'With load' units, termites substituted some of the wood for load-bearing clay walls, and kept the wood drier than on the unloaded units. As drier wood has higher compressive strength and higher rigidity, it allows more of the wood to be consumed. These results suggest that moisture plays a more important role in termite ecology than previously thought. Termites manipulate the moisture content according to the situational context and use it for multiple purposes: increased moisture levels soften the fibre, which facilitates foraging, yet keeping the wood dry provides higher structural stability against buckling which is especially important when foraging on wood under load.


Asunto(s)
Isópteros , Animales , Arcilla , Agua , Madera
19.
J R Soc Interface ; 15(149): 20180505, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30958236

RESUMEN

As eusocial and wood-dwelling insects, termites have been shown to use vibrations to assess their food, to eavesdrop on competitors and predators and to warn nest-mates. Bioassay choice experiments used to determine food preferences in animals often consider single factors only but foraging decisions can be influenced by multiple factors such as the quantity and quality of the food and the wood as a medium for communication. A statistical analysis framework is developed here to design a single bioassay experiment to study multifactorial foraging choice ( Pinus radiata) in the basal Australian termite species Coptotermes ( C.) acinaciformis (Isoptera: Rhinotermitidae). By employing a correlation analysis, 17 measured physical properties of 1417 Pinus radiata veneer discs were reduced to five key material properties: density, moisture absorption, early wood content, first resonance frequency and damping. By applying a fuzzy c-means clustering technique, these veneer discs were optimally paired for treatment and control trials to study food preference by termites based on these five key material properties. A multifactorial analysis of variance was compared to a permutation analysis of the results indicating for the first time that C. acinaciformis takes into account multiple factors when making foraging decisions. C. acinaciformis prefer denser wood with large early wood content, preferably humid and highly damped. Results presented here have practical implications for food choice experiments and for studies concerned with communication in termites as well as their ecology and coevolution with trees as their major food source.


Asunto(s)
Conducta Alimentaria/fisiología , Isópteros/fisiología , Pinus , Madera , Animales
20.
Ecol Lett ; 20(2): 212-221, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111901

RESUMEN

Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships.


Asunto(s)
Señales (Psicología) , Isópteros/fisiología , Vibración , Animales , Hormigas/fisiología , Fenómenos Biomecánicos , Percepción , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...