Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948749

RESUMEN

Binge drinking is common among adolescents despite mounting evidence linking it to various adverse health outcomes that includes heightened pain perception. The prelimbic (PrL) cortex is vulnerable to insults from adolescent alcohol exposure and receives input from the basolateral amygdala (BLA) while sending projections to the ventrolateral periaqueductal gray (vlPAG) - two brain regions implicated in nociception. In this study, adolescent intermittent ethanol (AIE) exposure was carried out in male and female rats using a vapor inhalation procedure. Mechanical and thermal sensitivity, assessed throughout adolescence and into adulthood, revealed that AIE exposure induced protracted mechanical allodynia in both male and female rats. However, a carrageenan inflammatory paw pain challenge in adult rats revealed that AIE did not further augment carrageenan-induced hyperalgesia. To investigate synaptic function at BLA inputs onto defined populations of PrL neurons, retrobeads and viral labelling were combined with optogenetics and slice electrophysiology. Recordings from retrobead labelled cells in the PrL revealed AIE reduced BLA driven feedforward inhibition of neurons projecting from the PrL to the vlPAG (PrL PAG neurons), resulting in augmented excitation/inhibition (E/I) balance and increased intrinsic excitability. Consistent with this finding, recordings from virally tagged PrL parvalbumin interneurons (PVINs) demonstrated that AIE exposure reduced both E/I balance at BLA inputs onto PVINs and PVIN intrinsic excitability when assessed in adulthood. These findings provide compelling evidence that AIE and acute pain alter synaptic function and intrinsic excitability within a prefrontal nociceptive circuit.

2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915577

RESUMEN

Dependence is a hallmark of alcohol use disorder characterized by excessive alcohol intake and withdrawal symptoms. The central nucleus of the amygdala (CeA) is a key brain structure underlying the synaptic and behavioral consequences of ethanol dependence. While accumulating evidence suggests that astrocytes regulate synaptic transmission and behavior, there is a limited understanding of the role astrocytes play in ethanol dependence. The present study used a combination of viral labeling, super resolution confocal microscopy, 3D image analysis, and slice electrophysiology to determine the effects of chronic intermittent ethanol (CIE) exposure on astrocyte plasticity in the CeA. During withdrawal from CIE exposure, we observed increased GABA transmission, an upregulation in astrocytic GAT3 levels, and an increased proximity of astrocyte processes near CeA synapses. Furthermore, GAT3 levels and synaptic proximity were positively associated with voluntary ethanol drinking in dependent rats. Slice electrophysiology confirmed that the upregulation in astrocytic GAT3 levels was functional, as CIE exposure unmasked a GAT3-sensitive tonic GABA current in the CeA. A causal role for astrocytic GAT3 in ethanol dependence was assessed using viral-mediated GAT3 overexpression and knockdown approaches. However, GAT3 knockdown or overexpression had no effect on somatic withdrawal symptoms, dependence-escalated ethanol intake, aversion-resistant drinking, or post-dependent ethanol drinking in male or female rats. Moreover, intra-CeA pharmacological inhibition of GAT3 also did not alter dependent ethanol drinking. Together, these findings indicate that ethanol dependence induces GABAergic dysregulation and astrocyte plasticity in the CeA. However, astrocytic GAT3 does not appear necessary for the drinking related phenotypes associated with dependence.

3.
Front Cell Neurosci ; 16: 944243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903367

RESUMEN

Dopamine (DA) is a cell-signaling molecule that does not readily cross the blood-brain barrier. Despite this, peripherally administered DA enhances DA levels in the nucleus accumbens and alters DA-related behaviors. This study was designed to investigate whether DA subtype-2 receptors are involved in the enhancement of nucleus accumbens (NAc) DA levels elicited by intravenous DA administration. This was accomplished by using microdialysis in the NAc and extracellular single unit recordings of putative DA neurons in the ventral tegmental area (VTA). Additionally, the reinforcing properties of intravenous DA were investigated using a place conditioning paradigm and the effects of intravenous DA on ultrasonic vocalizations were assessed. Following administration of intravenous dopamine, the firing rate of putative DA neurons in the VTA displayed a biphasic response and DA levels in the nucleus accumbens were enhanced. Pretreatment with domperidone, a peripheral-only DA D2 receptor (D2R) antagonist, reduced intravenous DA mediated increases in VTA DA neuron activity and NAc DA levels. Pretreatment with phentolamine, a peripheral α-adrenergic receptor antagonist, did not alter the effects of IV DA on mesolimbic DA neurotransmission. These results provide evidence for peripheral D2R mediation of the effects of intravenous DA on mesolimbic DA signaling.

4.
Sci Rep ; 12(1): 6595, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449195

RESUMEN

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have become a premier neuroscience research tool for enabling reversible manipulations of cellular activity following experimenter-controlled delivery of a DREADD-specific ligand. However, several DREADD ligands, e.g., clozapine-N-oxide (CNO), have metabolic and off-target effects that may confound experimental findings. New DREADD ligands aim to reduce metabolic and potential off-target effects while maintaining strong efficacy for the designer receptors. Recently a novel DREADD ligand, deschloroclozapine (DCZ), was shown to induce chemogenetic-mediated cellular and behavioral effects in mice and monkeys without detectable side effects. The goal of the present study was to examine the effectiveness of systemic DCZ for DREADD-based chemogenetic manipulations in behavioral and slice electrophysiological applications in rats. We demonstrate that a relatively low dose of DCZ (0.1 mg/kg) supports excitatory DREADD-mediated cFos induction, DREADD-mediated inhibition of a central amygdala-dependent behavior, and DREADD-mediated inhibition of neuronal activity in a slice electrophysiology preparation. In addition, we show that this dose of DCZ does not alter gross locomotor activity or induce a place preference/aversion in control rats without DREADD expression. Together, our findings support the use of systemic DCZ for DREADD-based manipulaations in rats, and provide evidence that DCZ is a superior alternative to CNO.


Asunto(s)
Drogas de Diseño , Animales , Conducta Animal , Drogas de Diseño/metabolismo , Drogas de Diseño/farmacología , Ligandos , Locomoción , Ratones , Neuronas/metabolismo , Ratas
5.
Addict Neurosci ; 42022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36643604

RESUMEN

Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.

6.
Psychopharmacology (Berl) ; 237(5): 1317-1330, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31965252

RESUMEN

RATIONALE: Methamphetamine (METH) enhances exocytotic dopamine (DA) signals and induces DA transporter (DAT)-mediated efflux in brain striatal regions such as the nucleus accumbens (NAc). Blocking sigma receptors prevents METH-induced DA increases. Sigma receptor activation induces Ca2+ release from intracellular stores, which may be responsible for METH-induced DA increases. OBJECTIVES: The role of intracellular and extracellular Ca2+ in METH-induced DA increases and associated behavior was tested. METHODS: METH-induced Ca2+ release was measured in hNPC-derived DA cells using ratiometric Ca2+ imaging. In mouse brain slices, fast-scan cyclic voltammetry was used to measure METH effects on two measures of dopamine: electrically stimulated and DAT-mediated efflux. Intracellular and extracellular Ca2+ was removed through pharmacological blockade of Ca2+ permeable channels (Cd2+ and IP3 sensitive channels), intracellular Ca2+ chelation (BAPTA-AM), or non-inclusion (zero Ca2+). Lastly, METH effects on dopamine-mediated locomotor behavior were tested in rats. Rats received intra-NAc injections of ACSF or 2-aminoethoxydiphenyl borate (2-APB; IP3 receptor blocker) and intraperitoneal METH (5 mg/kg) to test the role of intracellular Ca2+ release in DA-mediated behaviors. RESULTS: Reducing Ca2+ extracellular levels and Ca2+ release from intracellular stores prevented intracellular Ca2+ release. Intracellular Ca2+ chelation and blocking intracellular Ca2+ release reduced METH effects on voltammetric measures of dopamine. Blocking intracellular Ca2+ release via 2-APB resulted in increased METH-induced circling behavior. CONCLUSIONS: METH induces NAc DA release through intracellular Ca2+ activity. Blocking intracellular Ca2+ release prevents METH effects on DA signals and related behavior.


Asunto(s)
Calcio/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Metanfetamina/farmacología , Núcleo Accumbens/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células Madre/efectos de los fármacos , Células Madre/metabolismo
7.
Brain Stimul ; 13(2): 403-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31866493

RESUMEN

BACKGROUND: Growing evidence suggests that mechanical stimulation modulates substrates in the supraspinal central nervous system (CNS) outside the canonical somatosensory circuits. OBJECTIVE/METHODS: We evaluate mechanical stimulation applied to the cervical spine at the C7-T1 level (termed "MStim") on neurons and neurotransmitter release in the mesolimbic dopamine (DA) system, an area implicated in reward and motivation, utilizing electrophysiological, pharmacological, neurochemical and immunohistochemical techniques in Wistar rats. RESULTS: Low frequency (45-80 Hz), but not higher frequency (115 Hz), MStim inhibited the firing rate of ventral tegmental area (VTA) GABA neurons (52.8% baseline; 450 s) while increasing the firing rate of VTA DA neurons (248% baseline; 500 s). Inactivation of the nucleus accumbens (NAc), or systemic or in situ antagonism of delta opioid receptors (DORs), blocked MStim inhibition of VTA GABA neuron firing rate. MStim enhanced both basal (178.4% peak increase at 60 min) and evoked DA release in NAc (135.0% peak increase at 40 min), which was blocked by antagonism of DORs or acetylcholine release in the NAc. MStim enhanced c-FOS expression in the NAc, but inhibited total expression in the VTA, and induced translocation of DORs to neuronal membranes in the NAc. CONCLUSION: These findings demonstrate that MStim modulates neuron firing and DA release in the mesolimbic DA system through endogenous opioids and acetylcholine in the NAc. These findings demonstrate the need to explore more broadly the extra-somatosensory effects of peripheral mechanoreceptor activation and the specific role for mechanoreceptor-based therapies in the treatment of substance abuse.


Asunto(s)
Vértebras Cervicales/fisiología , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/fisiología , Animales , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/metabolismo , Masculino , Núcleo Accumbens/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica , Área Tegmental Ventral/metabolismo
8.
Front Neurosci ; 12: 131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29556175

RESUMEN

The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice. In the acute condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after a single in vivo dose of saline or ethanol. In the chronic condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after either 2 weeks of twice-daily IP ethanol or saline or following exposure to chronic intermittent ethanol (CIE) vapor or air for 3 weeks. VTA GABA neuron firing rate was more sensitive to muscimol than DA neuron firing rate. VTA GABA neurons, but not DA neurons, were resistant to the inhibitory effects of muscimol recorded 24 h after a single ethanol injection or chronic ethanol exposure. Administration of the NMDA receptor antagonist MK-801 before ethanol injection restored the sensitivity of VTA GABA neurons to muscimol inhibition. Seven days after ethanol exposure, VTA GABA neuron firing rate was again susceptible to muscimol's inhibitory effects in the acute condition, but the resistance persisted in the chronic condition. These findings suggest that VTA GABA neurons exclusively undergo a shift in GABA(A) receptor function following acute and chronic exposure. There appears to be transient GABA(A) receptor-mediated plasticity after a single exposure to ethanol that is mediated by NMDA glutamate receptors. In addition, the resistance to muscimol inhibition in VTA GABA neurons persists in the dependent condition, which may contribute to the the hyperexcitability of VTA GABA neurons and inhibition of VTA DA neurons during withdrawal as well as the motivation to seek alcohol.

9.
Front Neurol ; 9: 155, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599746

RESUMEN

OBJECTIVE/BACKGROUND: Restless Legs Syndrome (RLS) is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs) in RLS. PATIENTS/METHODS: Dopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC) expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry. RESULTS: Blood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only. CONCLUSION: Downregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

10.
Neuropsychopharmacology ; 43(6): 1405-1414, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29185481

RESUMEN

Methamphetamine (METH) is a drug with a high addictive potential that is widely abused across the world. Although it is known that METH dysregulates both dopamine transmission and dopamine reuptake, the specific mechanism of action remains obscure. One promising target of METH is the sigma receptor, a chaperone protein located on the membrane of the endoplasmic reticulum. Using fast-scan cyclic voltammetry, we show that METH-enhancement of evoked dopamine release and basal efflux is dependent on sigma receptor activation. METH-induced activation of sigma receptors results in oxidation of a cysteine residue on VMAT2, which decreases transporter function. Unilateral injections of the sigma receptor antagonist BD-1063 prior to METH administration increased dopamine-related ipsilateral circling behavior, indicating the involvement of sigma receptors. These findings suggest that interactions between METH and the sigma receptor lead to oxidative species (most likely superoxide) that in turn oxidize VMAT2. Altogether, these findings show that the sigma receptor has a key role in METH dysregulation of dopamine release and dopamine-related behaviors.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Metanfetamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores sigma/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Antioxidantes/farmacología , Dopaminérgicos/farmacología , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores sigma/antagonistas & inhibidores , Técnicas de Cultivo de Tejidos , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...