Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(44): 26220-26228, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519731

RESUMEN

The benthic microbial fuel cell (BMFC) is a promising technology for harvesting renewable energy from marine littoral environments. The scientific community has researched BMFC technology for well over a decade, but the in situ performance remains challenging. To address this challenge, BMFC power experiments were performed on sediment collected from San Diego Bay (CA, USA), La Spezia (Italy) and Honolulu (HI, USA) in the ever-changing littoral environment. Analysis of BMFC laboratory data found the power density varied substantially across 11 sites in San Diego Bay. In addition, data from experiments repeated at four locations in San Diego Bay showed significant differences between experiments performed in 2014, 2016 and 2019. Multivariable linear analysis showed BMFC 90 day cumulative power density was positively correlated with the total organic carbon (p < 0.05) and negatively correlated with the black carbon in the sediment (p < 0.05). Regression coefficients trained on the San Diego Bay data from 2014 facilitated accurate predictions of BMFC performance in 2016 and 2019. The modeling paradigm accurately explained variations in BMFC power performance in La Spezia and showed sediment parameters can impact BMFC performance differently across geographic regions. The results demonstrate a great potential to use sediment parameters and statistical modeling to predict BMFC power performance prior to deployment in oceanographic environments, thereby reducing cost, work force and resources.

2.
BMC Genomics ; 11: 494, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836887

RESUMEN

BACKGROUND: Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. RESULTS: We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the Shewanella genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.Comparison of the reconstructed catabolic pathways with E. coli identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks. CONCLUSIONS: The reconstructed sugar catabolome in Shewanella spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Genoma Bacteriano/genética , Redes y Vías Metabólicas/genética , Shewanella/genética , Shewanella/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Carbono/metabolismo , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Datos de Secuencia Molecular , Fenotipo , Regulón/genética , Reproducibilidad de los Resultados , Shewanella/enzimología , Shewanella/aislamiento & purificación , Transcripción Genética
3.
Funct Integr Genomics ; 10(1): 97-110, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19802638

RESUMEN

Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species' cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na(+)/H(+) antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Frío , Familia de Multigenes/genética , Shewanella/genética , Sintenía/genética , Proteínas Bacterianas/química , Genes Bacterianos/genética , Sitios Genéticos/genética , Fenotipo , Estructura Terciaria de Proteína , Tolerancia a la Sal/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
J Biol Chem ; 281(40): 29872-85, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16857666

RESUMEN

We used a comparative genomics approach implemented in the SEED annotation environment to reconstruct the chitin and GlcNAc utilization subsystem and regulatory network in most proteobacteria, including 11 species of Shewanella with completely sequenced genomes. Comparative analysis of candidate regulatory sites allowed us to characterize three different GlcNAc-specific regulons, NagC, NagR, and NagQ, in various proteobacteria and to tentatively assign a number of novel genes with specific functional roles, in particular new GlcNAc-related transport systems, to this subsystem. Genes SO3506 and SO3507, originally annotated as hypothetical in Shewanella oneidensis MR-1, were suggested to encode novel variants of GlcN-6-P deaminase and GlcNAc kinase, respectively. Reconstitution of the GlcNAc catabolic pathway in vitro using these purified recombinant proteins and GlcNAc-6-P deacetylase (SO3505) validated the entire pathway. Kinetic characterization of GlcN-6-P deaminase demonstrated that it is the subject of allosteric activation by GlcNAc-6-P. Consistent with genomic data, all tested Shewanella strains except S. frigidimarina, which lacked representative genes for the GlcNAc metabolism, were capable of utilizing GlcNAc as the sole source of carbon and energy. This study expands the range of carbon substrates utilized by Shewanella spp., unambiguously identifies several genes involved in chitin metabolism, and describes a novel variant of the classical three-step biochemical conversion of GlcNAc to fructose 6-phosphate first described in Escherichia coli.


Asunto(s)
Acetilglucosamina/metabolismo , Genoma Bacteriano , Shewanella/genética , Shewanella/metabolismo , Transducción de Señal/genética , Acetilglucosamina/química , Quitina/metabolismo , Shewanella/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA