Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 38(9): 2207-2216, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30354257

RESUMEN

Objective- SGLT2 (sodium-glucose cotransporter 2) inhibition in humans leads to increased levels of LDL (low-density lipoprotein) cholesterol and decreased levels of plasma triglyceride. Recent studies, however, have shown this therapy to lower cardiovascular mortality. In this study, we aimed to determine how SGLT2 inhibition alters circulating lipoproteins. Approach and Results- We used a mouse model expressing human CETP (cholesteryl ester transfer protein) and human ApoB100 (apolipoprotein B100) to determine how SGLT2 inhibition alters plasma lipoprotein metabolism. The mice were fed a high-fat diet and then were made partially insulin deficient using streptozotocin. SGLT2 was inhibited using a specific antisense oligonucleotide or canagliflozin, a clinically available oral SGLT2 inhibitor. Inhibition of SGLT2 increased circulating levels of LDL cholesterol and reduced plasma triglyceride levels. SGLT2 inhibition was associated with increased LpL (lipoprotein lipase) activity in the postheparin plasma, decreased postprandial lipemia, and faster clearance of radiolabeled VLDL (very-LDL) from circulation. Additionally, SGLT2 inhibition delayed turnover of labeled LDL from circulation. Conclusions- Our studies in diabetic CETP-ApoB100 transgenic mice recapitulate many of the changes in circulating lipids found with SGLT2 inhibition therapy in humans and suggest that the increased LDL cholesterol found with this therapy is because of reduced clearance of LDL from the circulation and greater lipolysis of triglyceride-rich lipoproteins. Most prominent effects of SGLT2 inhibition in the current mouse model were seen with antisense oligonucleotides-mediated knockdown of SGLT2.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Lipoproteínas LDL/sangre , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Triglicéridos/sangre , Tejido Adiposo/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Glucemia/metabolismo , Regulación hacia Abajo , Ácidos Grasos no Esterificados/sangre , Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , ARN Mensajero/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
2.
J Lipid Res ; 58(6): 1214-1220, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28314859

RESUMEN

Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.


Asunto(s)
Apolipoproteínas/sangre , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Lipoproteínas VLDL/metabolismo , Oxazolidinonas/farmacología , Triglicéridos/metabolismo , Apolipoproteína C-II/sangre , Apolipoproteína C-III/sangre , Apolipoproteínas E/sangre , Interacciones Farmacológicas , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Masculino , Persona de Mediana Edad
3.
Circulation ; 135(4): 352-362, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-27986651

RESUMEN

BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Lipoproteínas VLDL/metabolismo , Inhibidores de PCSK9 , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Sci Transl Med ; 8(323): 323ra12, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26819195

RESUMEN

Mipomersen is a 20mer antisense oligonucleotide (ASO) that inhibits apolipoprotein B (apoB) synthesis; its low-density lipoprotein (LDL)-lowering effects should therefore result from reduced secretion of very-low-density lipoprotein (VLDL). We enrolled 17 healthy volunteers who received placebo injections weekly for 3 weeks followed by mipomersen weekly for 7 to 9 weeks. Stable isotopes were used after each treatment to determine fractional catabolic rates and production rates of apoB in VLDL, IDL (intermediate-density lipoprotein), and LDL, and of triglycerides in VLDL. Mipomersen significantly reduced apoB in VLDL, IDL, and LDL, which was associated with increases in fractional catabolic rates of VLDL and LDL apoB and reductions in production rates of IDL and LDL apoB. Unexpectedly, the production rates of VLDL apoB and VLDL triglycerides were unaffected. Small interfering RNA-mediated knockdown of apoB expression in human liver cells demonstrated preservation of apoB secretion across a range of apoB synthesis. Titrated ASO knockdown of apoB mRNA in chow-fed mice preserved both apoB and triglyceride secretion. In contrast, titrated ASO knockdown of apoB mRNA in high-fat-fed mice resulted in stepwise reductions in both apoB and triglyceride secretion. Mipomersen lowered all apoB lipoproteins without reducing the production rate of either VLDL apoB or triglyceride. Our human data are consistent with long-standing models of posttranscriptional and posttranslational regulation of apoB secretion and are supported by in vitro and in vivo experiments. Targeting apoB synthesis may lower levels of apoB lipoproteins without necessarily reducing VLDL secretion, thereby lowering the risk of steatosis associated with this therapeutic strategy.


Asunto(s)
Apolipoproteína B-100/antagonistas & inhibidores , Hígado/metabolismo , Adolescente , Adulto , Anciano , Animales , Apolipoproteínas B/genética , Femenino , Voluntarios Sanos , Células Hep G2 , Humanos , Lipoproteínas IDL/sangre , Lipoproteínas LDL/sangre , Lipoproteínas VLDL/sangre , Masculino , Ratones , Persona de Mediana Edad , Oligonucleótidos/química , Oligonucleótidos Antisentido/química , ARN Interferente Pequeño/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Adulto Joven
6.
J Clin Invest ; 125(6): 2510-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25961461

RESUMEN

BACKGROUND: Individuals treated with the cholesteryl ester transfer protein (CETP) inhibitor anacetrapib exhibit a reduction in both LDL cholesterol and apolipoprotein B (ApoB) in response to monotherapy or combination therapy with a statin. It is not clear how anacetrapib exerts these effects; therefore, the goal of this study was to determine the kinetic mechanism responsible for the reduction in LDL and ApoB in response to anacetrapib. METHODS: We performed a trial of the effects of anacetrapib on ApoB kinetics. Mildly hypercholesterolemic subjects were randomized to background treatment of either placebo (n = 10) or 20 mg atorvastatin (ATV) (n = 29) for 4 weeks. All subjects then added 100 mg anacetrapib to background treatment for 8 weeks. Following each study period, subjects underwent a metabolic study to determine the LDL-ApoB-100 and proprotein convertase subtilisin/kexin type 9 (PCSK9) production rate (PR) and fractional catabolic rate (FCR). RESULTS: Anacetrapib markedly reduced the LDL-ApoB-100 pool size (PS) in both the placebo and ATV groups. These changes in PS resulted from substantial increases in LDL-ApoB-100 FCRs in both groups. Anacetrapib had no effect on LDL-ApoB-100 PRs in either treatment group. Moreover, there were no changes in the PCSK9 PS, FCR, or PR in either group. Anacetrapib treatment was associated with considerable increases in the LDL triglyceride/cholesterol ratio and LDL size by NMR. CONCLUSION: These data indicate that anacetrapib, given alone or in combination with a statin, reduces LDL-ApoB-100 levels by increasing the rate of ApoB-100 fractional clearance. TRIAL REGISTRATION: ClinicalTrials.gov NCT00990808. FUNDING: Merck & Co. Inc., Kenilworth, New Jersey, USA. Additional support for instrumentation was obtained from the National Center for Advancing Translational Sciences (UL1TR000003 and UL1TR000040).


Asunto(s)
Anticolesterolemiantes/administración & dosificación , Apolipoproteína B-100/sangre , LDL-Colesterol/sangre , Hipercolesterolemia , Lipoproteínas LDL/sangre , Oxazolidinonas/administración & dosificación , Triglicéridos/sangre , Adulto , Anciano , Atorvastatina , Método Doble Ciego , Femenino , Ácidos Heptanoicos/administración & dosificación , Humanos , Hipercolesterolemia/sangre , Hipercolesterolemia/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Pirroles/administración & dosificación , Factores de Tiempo
7.
Arterioscler Thromb Vasc Biol ; 35(1): 102-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25395613

RESUMEN

OBJECTIVE: Diabetic hypertriglyceridemia is thought to be primarily driven by increased hepatic de novo lipogenesis. However, experiments in animal models indicated that insulin deficiency should decrease hepatic de novo lipogenesis and reduce plasma triglyceride levels. APPROACH AND RESULTS: To address the discrepancy between human data and genetically altered mouse models, we investigated whether insulin-deficient diabetic mice had triglyceride changes that resemble those in diabetic humans. Streptozotocin-induced insulin deficiency increased plasma triglyceride levels in mice. Contrary to the mouse models with impaired hepatic insulin receptor signaling, insulin deficiency did not reduce hepatic triglyceride secretion and de novo lipogenesis-related gene expression. Diabetic mice had a marked decrease in postprandial triglycerides clearance, which was associated with decreased lipoprotein lipase and peroxisome proliferator-activated receptor α mRNA levels in peripheral tissues and decreased lipoprotein lipase activity in skeletal muscle, heart, and brown adipose tissue. Diabetic heterozygous lipoprotein lipase knockout mice had markedly elevated fasting plasma triglyceride levels and prolonged postprandial triglycerides clearance. CONCLUSIONS: Insulin deficiency causes hypertriglyceridemia by decreasing peripheral lipolysis and not by an increase in hepatic triglycerides production and secretion.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Hipertrigliceridemia/metabolismo , Insulina/sangre , Lipólisis , Hígado/metabolismo , Estreptozocina , Triglicéridos/sangre , Tejido Adiposo Pardo/metabolismo , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Hipertrigliceridemia/sangre , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/genética , Lipogénesis , Lipoproteína Lipasa/deficiencia , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Miocardio/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , Periodo Posprandial , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo
8.
J Biol Chem ; 288(20): 14046-14058, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23542081

RESUMEN

Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo/metabolismo , Lipoproteína Lipasa/deficiencia , Lipoproteína Lipasa/genética , Adipocitos/citología , Animales , Trasplante de Médula Ósea , Quilomicrones/farmacocinética , Lípidos/química , Lipólisis , Macrófagos/citología , Masculino , Ratones , Ratones Noqueados , Fenotipo , Triglicéridos/sangre , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...