Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Med ; 27(1): 108, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525937

RESUMEN

BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Faecalibacterium prausnitzii/fisiología , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Aminoácidos de Cadena Ramificada/metabolismo , Biomarcadores , Pesos y Medidas Corporales , Niño , Femenino , Humanos , Resistencia a la Insulina , Masculino , Metabolómica/métodos , Metagenoma , Metagenómica/métodos , Obesidad/metabolismo , Vigilancia en Salud Pública
2.
Gut Microbes ; 11(4): 900-917, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31973685

RESUMEN

BACKGROUND: Gut microbiota, by influencing multiple metabolic processes in the host, is an important determinant of human health and disease. However, gut dysbiosis associated with metabolic complications shows inconsistent patterns. This is likely driven by factors shaping gut microbial composition that have largely been under-evaluated, at a population level, in school-age children, especially from developing countries. RESULTS: Through characterization, by 16S sequencing, of the largest gut microbial population-based school-aged children cohort in Latin America (ORSMEC, N = 926, aged 6-12 y), we identified associations of 14 clinical and environmental covariates (PFDR<0.1), collectively explaining 15.7% of the inter-individual gut microbial variation. Extrinsic factors such as markers of socioeconomic status showed a major influence in the most abundant taxa and in the enterotypes' distribution. Age was positively correlated with higher diversity, but only in normal-weight children (rho = 0.138, P =2 × 10-3). In contrast, this correlation although not significant, was negative in overweight and obese children (rho = -0.125, P = 0.104 and rho = -0.058, P = 0.409, respectively). Finally, co-abundance groups (CAGs) were associated with the presence of metabolic complications. CONCLUSIONS: Our study offers evidence that the presence of overweight and obesity could impair the microbial diversity maturation associated with age. Furthermore, it provides novel results toward a better understanding of gut microbiota in the pediatric population that will ultimately help to develop therapeutic approaches to improve metabolic status.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal , Adiposidad , Adolescente , Bacterias/clasificación , Bacterias/genética , Variación Biológica Poblacional , Niño , Estudios Transversales , Dieta , Femenino , Humanos , Estilo de Vida , Masculino , Síndrome Metabólico/microbiología , Obesidad/microbiología , Obesidad Infantil/microbiología , Factores Socioeconómicos
3.
Sci Rep ; 7(1): 5607, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28717206

RESUMEN

Childhood obesity is associated with a number of metabolic abnormalities leading to increased cardiovascular risk. Metabolites can be useful as early biomarkers and new targets to promote early intervention beginning in school age. Thus, we aimed to identify metabolomic profiles associated with obesity and obesity-related metabolic traits. We used data from the Obesity Research Study for Mexican children (ORSMEC) in Mexico City and included a case control (n = 1120), cross-sectional (n = 554) and a longitudinal study (n = 301) of 6-12-year-old children. Forty-two metabolites were measured using electrospray MS/MS and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical and biochemical parameters. Principal component analysis showed a serum amino acid signature composed of arginine, leucine/isoleucine, phenylalanine, tyrosine, valine and proline significantly associated with obesity (OR = 1.57; 95%CI 1.45-1.69, P = 3.84 × 10-31) and serum triglycerides (TG) (ß = 0.067, P = 4.5 × 10-21). These associations were validated in the cross-sectional study (P < 0.0001). In the longitudinal cohort, the amino acid signature was associated with serum TG and with the risk of hypertriglyceridemia after 2 years (OR = 1.19; 95%CI 1.03-1.39, P = 0.016). This study shows that an amino acid signature significantly associated with childhood obesity, is an independent risk factor of future hypertriglyceridemia in children.


Asunto(s)
Aminoácidos/metabolismo , Biomarcadores/metabolismo , Hipertrigliceridemia/diagnóstico , Metaboloma , Obesidad Infantil/complicaciones , Aminoácidos/análisis , Antropometría , Estudios de Casos y Controles , Niño , Estudios Transversales , Femenino , Humanos , Hipertrigliceridemia/epidemiología , Hipertrigliceridemia/etiología , Hipertrigliceridemia/metabolismo , Estudios Longitudinales , Masculino , México/epidemiología , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...