Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Med Chem ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855342

RESUMEN

The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.

2.
Rev Invest Clin ; 75(1): 1-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36854079

RESUMEN

Abstract: Epilepsy is a multifactorial pathology that has allowed the development of various drugs aiming to combat it. This effort was formally initiated in the 1940s when phenytoin began to be used. It eventually turned out to be a drug with great anticonvulsant efficacy. At present, several potentially good new generation anti-seizure medications (ASMs) have been developed. Most of them present more tolerability and less toxic effects. However, they continue to have adverse effects at different levels. In addition, some seizures are difficult to treat with ASMs, representing 30% of the total cases of people who suffer from epilepsy. This review aims to explore the genetic and molecular mechanisms of ASMs neurotoxicity, proposing the study of damage caused by epileptic seizures, in addition to the deterioration generated by anti-seizure drug administration within the central nervous system. It is beyond question that there is a need to develop drugs that lower the lower the risk of secondary and toxic effects of ASMs. Simultaneously, we must find strategies that produce fewer harmful interactions and more health benefits when taking anti-seizure drugs.


Asunto(s)
Anticonvulsivantes , Sistema Nervioso Central , Humanos , Sistema Nervioso Central/efectos de los fármacos , Anticonvulsivantes/efectos adversos , Epilepsia/tratamiento farmacológico
3.
Rev. invest. clín ; Rev. invest. clín;75(1): 1-12, Jan.-Feb. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1450098

RESUMEN

ABSTRACT Epilepsy is a multifactorial pathology that has allowed the development of various drugs aiming to combat it. This effort was formally initiated in the 1940s when phenytoin began to be used. It eventually turned out to be a drug with great anticonvulsant efficacy. At present, several potentially good new generation anti-seizure medications (ASMs) have been developed. Most of them present more tolerability and less toxic effects. However, they continue to have adverse effects at different levels. In addition, some seizures are difficult to treat with ASMs, representing 30% of the total cases of people who suffer from epilepsy. This review aims to explore the genetic and molecular mechanisms of ASMs neurotoxicity, proposing the study of damage caused by epileptic seizures, in addition to the deterioration generated by anti-seizure drug administration within the central nervous system. It is beyond question that there is a need to develop drugs that lower the lower the risk of secondary and toxic effects of ASMs. Simultaneously, we must find strategies that produce fewer harmful interactions and more health benefits when taking anti-seizure drugs.

4.
ASN Neuro ; 14: 17590914221102075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36050845

RESUMEN

SUMMARY STATEMENT: A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.


Asunto(s)
Dopamina , Trastornos Parkinsonianos , Adenosina , Animales , Trastornos Parkinsonianos/tratamiento farmacológico , Pramipexol , Receptores de Dopamina D2/fisiología , Roedores
5.
FEBS J ; 287(16): 3449-3471, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31958362

RESUMEN

B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.


Asunto(s)
Linfocitos B/metabolismo , Membrana Celular/metabolismo , Movimiento Celular/genética , Endocitosis/genética , Tetraspaninas/genética , Linfocitos B/ultraestructura , Sistemas CRISPR-Cas , Adhesión Celular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica , Fagocitosis/genética , Estrés Mecánico , Tetraspaninas/metabolismo
6.
J Leukoc Biol ; 105(5): 843-856, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30457676

RESUMEN

B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.


Asunto(s)
Anticuerpos/inmunología , Subgrupos de Linfocitos B/inmunología , Citocinas/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Innata , Animales , Anticuerpos/genética , Antígenos CD/genética , Antígenos CD/inmunología , Subgrupos de Linfocitos B/clasificación , Subgrupos de Linfocitos B/citología , Comunicación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Citocinas/genética , Expresión Génica , Humanos
7.
Rev Invest Clin ; 69(5): 243-246, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29077695

RESUMEN

Although the production of antigen-specific antibodies has been the originally accepted function of B-cells during immune responses, specific subsets that can negatively regulate inflammation, designated regulatory B-cells (Bregs), have been identified recently. These immunosuppressive cells support tolerance, mainly through the production of interleukin 10 and other unconventional factors. There have been emerging data suggesting their importance in diverse normal and pathologic processes. Novel and in development B-cell targeted therapies seem to be ideal treatments for different types of diseasessuch as cancer and allergy. Here, we discuss the current knowledge on the implication of Bregs in autoimmunity- elated diseases, highlighting the importance of these cells for the development of novel strategies in the treatment of these pathologies.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Linfocitos B Reguladores/inmunología , Animales , Anticuerpos/inmunología , Enfermedades Autoinmunes/terapia , Humanos , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Interleucina-10/inmunología , Terapia Molecular Dirigida
8.
Immunol Res ; 61(3): 260-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25527966

RESUMEN

Two patients with a severe leukocyte adhesion deficiency type 1 (LAD-1) phenotype were analyzed by flow cytometry and functional assays to demonstrate the improper adhesive and phagocytic responses of their leukocytes. A single homozygous defect that involves a missense mutation (c.817G>A) that encodes for a G273R substitution in CD18 was identified in both patients. The adhesion and phagocytosis assays demonstrated the inability of patients' leukocytes to perform these functions. Expression of the LFA-1 (CD11a/CD18) on the co-transfected HEK 293 cells with the mutated form of CD18 was not detected. Finally, both patients have been treated with immunoglobulin as an adjunctive therapy with positive results. We propose that intravenous immunoglobulin treatment is safe and efficacious in LAD-1 patients before hematopoietic stem cell transplantation and helpful in controlling severe infections. Subcutaneous immunoglobulin appeared to help wound healing in refractory ulcers in these patients.


Asunto(s)
Antígenos CD18/metabolismo , Trasplante de Células Madre Hematopoyéticas , Inmunoglobulinas Intravenosas/administración & dosificación , Síndrome de Deficiencia de Adhesión del Leucocito/diagnóstico , Leucocitos/fisiología , Úlcera/diagnóstico , Antígenos CD18/genética , Adhesión Celular/genética , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Estudios de Factibilidad , Células HEK293 , Humanos , Inmunoglobulinas Intravenosas/efectos adversos , Lactante , Síndrome de Deficiencia de Adhesión del Leucocito/terapia , Masculino , Mutación Missense/genética , Linaje , Fagocitosis/genética , Resultado del Tratamiento , Úlcera/terapia , Cicatrización de Heridas/efectos de los fármacos
9.
J Phys Chem B ; 117(16): 4568-81, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23189921

RESUMEN

We report on the photosensitization of titanium dioxide nanoparticles (TiO2 NPs) synthesized inside AOT (bis(2-ethylhexyl) sulfosuccinate sodium salt) reverse micelles following photoexcitation of perylene derivatives with dicarboxylate anchoring groups. The dyes, 1,7-dibromoperylene-3,4,9,10-tetracarboxy dianhydride (1), 1,7-dipyrrolidinylperylene-3,4,9,10-tetracarboxy dianhydride (2), and 1,7-bis(4-tert-butylphenyloxy)perylene-3,4,9,10-tetracarboxy dianhydride (3), have considerably different driving forces for photoinduced electron injection into the TiO2 conduction band, as estimated by electrochemical measurements and quantum mechanical calculations. Fluorescence anisotropy measurements indicate that dyes 1 and 2 are preferentially solubilized in the micellar structure, creating a relatively large local concentration that favors the attachment of the dye to the TiO2 surface. The binding process was followed by monitoring the hypsochromic shift of the dye absorption spectra over time for 1 and 2. Photoinduced electron transfer from the singlet excited state of 1 and 2 to the TiO2 conduction band (CB) is indicated by emission quenching of the TiO2-bound form of the dyes and confirmed by transient absorption measurements of the radical cation of the dyes and free carriers (injected electrons) in the TiO2 semiconductor. Steady state and transient spectroscopy indicate that dye 3 does not bind to the TiO2 NPs and does not photosensitize the semiconductor. This observation was rationalized as a consequence of the bulky t-butylphenyloxy groups which create a strong steric impediment for deep access of the dye within the micelle structure to reach the semiconductor oxide surface.


Asunto(s)
Nanopartículas del Metal/química , Micelas , Perileno/análogos & derivados , Perileno/química , Pirrolidinas/química , Titanio/química , Transporte de Electrón , Polarización de Fluorescencia , Luz , Teoría Cuántica , Dispersión de Radiación , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA