Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24483, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298720

RESUMEN

A laccase-based catalytic reactor was developed into a polydimethylsiloxane (PDMS) microfluidic device, allowing the degradation of different concentrations of the emergent pollutant, Bisphenol-A (BPA), at a rate similar to free enzyme. Among the immobilizing agents used, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was capable of immobilizing a more significant amount of the laccase enzyme in comparison to glutaraldehyde (GA), and the passive method (2989, 1537, and 1905 U/mL, respectively). The immobilized enzyme inside the microfluidic device could degrade 55 ppm of BPA at a reaction rate of 0.5309 U/mL*min with a contaminant initial concentration of 100 ppm at room temperature. In conclusion, the design of a microfluidic device and the immobilization of the laccase enzyme successfully allowed a high capacity of BPA degradation.

2.
Int J Biol Macromol ; 179: 80-89, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667559

RESUMEN

Herein, the advantages of enzyme mimetics by redefining the catalytic attributes and implementing artificial enzymes (AEs) for energy-related applications have presented. The intrinsic enzyme-like catalytic characteristics of nanozymes have become a growing area of prime interest in bio-catalysis. The development of AEs has redefined the concept of catalytic activity, opening a wide range of possibilities in biotechnological and energy sectors. Nowadays, power-energy is one of the most valuable resources that enable the development and progress of humanity. Over the last 50 years, fossil fuels' burning has released greenhouse gases and negatively impacted the environment and health. In 2019, around 84% of global primary energy came from coal, oil, and gas. Therefore, a global energy transition to renewable and sustainable energy is urgently needed to generate clean energy as biofuels and biohydrogen. However, to achieve this, the implementation of natural enzymes brings more significant challenges because their practical application is limited by the low operational stability, harsh environmental conditions, and expensive preparation processes. Hence, to accelerate the transition, promising substitutes are AEs, well-defined structures made of organic or inorganic materials that can mimic the catalytic power of natural enzymes. Despite being still in the midst, enzyme mimics overcome the main obstacles for a conventional enzyme. It opens future opportunities to optimize the production of renewable energies with excellent performance, high efficiency, and increasingly competitive prices. Thus, this work is a comprehensive study covering the promising potential of AEs, as biocatalysts, specifically for renewable energy production.


Asunto(s)
Biocombustibles , Materiales Biomiméticos/química , Enzimas/química , Hidrógeno/química , Nanoestructuras/química , Catálisis
3.
Sci Total Environ ; 738: 140225, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806380

RESUMEN

Coffee is one of the most important commercial traded commodities in the international market, as well as the most popular beverage around the world. In Mexico, organic coffee cultivation (specifically, Arabica coffee crops) is a highly demanded that generates up to 500,000 employments in 14 federal entities. Among various coffee producers, Chiapas, Veracruz, and Oaxaca are responsible of 80% of the total coffee production in the country. Currently, Mexico is the leading producer of organic coffee in the world. However, there have been a slow recovery due to the large production losses since 2012, caused by earlier and highly aggressive outbreaks of coffee leaf rust (CLR), in the country, where the infectious agent is known as Hemileia vastatrix (HV). This phenomenon is becoming frequent, and climate change effects could be the main contributors. This spontaneous proliferation was generated in Mexico, due to the precipitation and temperature variability, during the last decade. As result, in Mexico, the biological interaction between coffee crops and their environment has been harmed and crucial characteristics, as crop yield and quality, are particularly being affected, directly by the negative effects of the greenhouse phenomenon, and indirectly, through diseases as CLR. Therefore, this review discusses the contribution of climate change effects in the early development of CLR in Mexico. The focus is also given on possible schemes and actions taken around the world as control measures to adapt the vulnerable coffee varieties to tackle this challenging issue.


Asunto(s)
Basidiomycota , Café , Cambio Climático , México , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...