Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38592820

RESUMEN

Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.

2.
Genes (Basel) ; 14(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37372451

RESUMEN

Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Glycine max/genética , Glycine max/microbiología , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento , Fenotipo
3.
BMC Plant Biol ; 23(1): 335, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353746

RESUMEN

BACKGROUND: Cassava (Manihot esculenta Crantz) is staple food and major source of calories for over 500 million people in sub-Saharan Africa. The crop is also a source of income for smallholder farmers, and has increasing potential for industrial utilization. However, breeding efforts to match the increasing demand of cassava are impeded by its inability to flower, delayed or unsynchronized flowering, low proportion of female flowers and high fruit abortions. To overcome these sexual reproductive bottlenecks, this study investigated the effectiveness of using red lights to extend the photoperiod (RLE), as a gateway to enhancing flowering and fruit set under field conditions. MATERIALS AND METHODS: Panels of cassava genotypes, with non- or late and early flowering response, 10 in each case, were subjected to RLE from dusk to dawn. RLE was further evaluated at low (LL), medium (ML) and high (HL) red light intensities, at ~ ≤ 0.5; 1.0 and 1.5PFD (Photon Flux Density) in µmol m-2 s-1 respectively. Additionally, the effect of a cytokinin and anti-ethylene as plant growth regulators (PGR) and pruning under RLE treatment were examined. RESULTS: RLE stimulated earlier flower initiation in all genotypes, by up to 2 months in the late-flowering genotypes. Height and number of nodes at first branching, particularly in the late-flowering genotypes were also reduced, by over 50%. Number and proportion of pistillate flowers more than doubled, while number of fruits and seeds also increased. Number of branching levels during the crop season also increased by about three. Earlier flowering in many genotypes was most elicited at LL to ML intensities. Additive effects on flower numbers were detected between RLE, PGR and pruning applications. PGR and pruning treatments further increased number and proportion of pistillate flowers and fruits. Plants subjected to PGR and pruning, developed bisexual flowers and exhibited feminization of staminate flowers. Pruning at first branching resulted in higher pistillate flower induction than at second branching. CONCLUSIONS: These results indicate that RLE improves flowering in cassava, and its effectiveness is enhanced when PGR and pruning are applied. Thus, deployment of these technologies in breeding programs could significantly enhance cassava hybridizations and thus cassava breeding efficiency and impact.


Asunto(s)
Manihot , Reguladores del Crecimiento de las Plantas , Frutas/genética , Manihot/genética , Fotoperiodo , Fitomejoramiento , Flores/genética
4.
PLoS One ; 18(5): e0284976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167229

RESUMEN

Common bean is the world's most important directly consumed legume food crop that is popular for calories, protein and micronutrients. It is a staple food in sub-Saharan Africa, and a significant source of iron for anemic people. However, several pests, soil and weather challenges still impede its production. Long cooking time, and high phytic acid and polyphenols that influence bioavailable iron also limit the health benefits. To inform population improvement strategies and selection decisions for resilient fast cooking and iron biofortified beans, the study determined diversity and population structure within 427 breeding lines, varieties, or landraces mostly from Alliance Uganda and Columbia. The genotypes were evaluated for days to flowering and physiological maturity, yield, seed iron (FESEED) and zinc (ZNSEED) and cooking time (COOKT). Data for all traits showed significant (P≤0.001) differences among the genotypes. Repeatability was moderate to high for most traits. Performance ranged from 52 to 87 ppm (FESEED), 23-38 ppm (ZNSEED), 36-361 minutes (COOKT), and 397-1299 kg/ha (yield). Minimal differences existed between the gene pools in the mean performance except in yield, where Mesoamerican beans were better by 117 kg/ha. The genotypes exhibited high genetic diversity and thus have a high potential for use in plant breeding. Improvement of FESEED and ZNSEED, COOKT and yield performance within some markets such as red and small white beans is possible. Hybridization across market classes especially for yellow beans is essential but this could be avoided by adding other elite lines to the population. Superior yielding and fast cooking, yellow and large white beans were specifically lacking. Adding Fe dense elite lines to the population is also recommended. The population was clustered into three groups that could be considered for specific breeding targets based on trait correlations.


Asunto(s)
Hierro , Phaseolus , Hierro/metabolismo , Phaseolus/metabolismo , Fitomejoramiento , Fenotipo , Genotipo , Semillas/metabolismo , Culinaria , Análisis por Conglomerados
5.
Front Plant Sci ; 13: 956936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160986

RESUMEN

Efficient breeding and selection of superior genotypes requires a comprehensive understanding of the genetics of traits. This study was aimed at establishing the general combining ability (GCA), specific combining ability (SCA), and heritability of sweetpotato weevil (Cylas spp.) resistance, storage root yield, and dry matter content in a sweetpotato multi-parental breeding population. A population of 1,896 F1 clones obtained from an 8 × 8 North Carolina II design cross was evaluated with its parents in the field at two sweetpotato weevil hotspots in Uganda, using an augmented row-column design. Clone roots were further evaluated in three rounds of a no-choice feeding laboratory bioassay. Significant GCA effects for parents and SCA effects for families were observed for most traits and all variance components were highly significant (p ≤ 0.001). Narrow-sense heritability estimates for weevil severity, storage root yield, and dry matter content were 0.35, 0.36, and 0.45, respectively. Parental genotypes with superior GCA for weevil resistance included "Mugande," NASPOT 5, "Dimbuka-bukulula," and "Wagabolige." On the other hand, families that displayed the highest levels of resistance to weevils included "Wagabolige" × NASPOT 10 O, NASPOT 5 × "Dimbuka-bukulula," "Mugande" × "Dimbuka-bukulula," and NASPOT 11 × NASPOT 7. The moderate levels of narrow-sense heritability observed for the traits, coupled with the significant GCA and SCA effects, suggest that there is potential for their improvement through conventional breeding via hybridization and progeny selection and advancement. Although selection for weevil resistance may, to some extent, be challenging for breeders, efforts could be boosted through applying genomics-assisted breeding. Superior parents and families identified through this study could be deployed in further research involving the genetic improvement of these traits.

6.
Front Plant Sci ; 12: 720532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880882

RESUMEN

Cassava mosaic geminiviruses (CMGs) and cassava brown streak viruses (CBSVs) cause the highest yield losses in cassava production in Africa. In particular, cassava brown streak disease (CBSD) is and continues to be a significant constraint to optimal cassava production in Eastern and Southern Africa. While CBSD has not been reported in West Africa, its recent rapid spread and damage to cassava productivity in Eastern, and Southern Africa is alarming. The aim of this study was to evaluate Nigerian cassava genotypes in order to determine their responses to CBSD, in the event that it invades Nigeria, the world's largest cassava producer. The study gathered information on whether useful CBSD resistance alleles are present in the elite Nigerian cassava accessions. A total of 1,980 full-sib cassava seedlings from 106 families were assessed in the field at the seedling stage for a year. A subset of 569 clones were selected and assessed for another year at the clonal stage in Namulonge, central Uganda, a known hotspot for CBSD screening. Results indicated that foliar and root incidences and severities varied significantly (p ≤ 0.01, p ≤ 0.001) except for CBSD foliar incidence at 6 months (CBSD6i ). Highest and lowest plot-based heritability estimates for CBSD were registered for CBSD root severity (CBSD rs ) (0.71) and CBSD6i (0.5). Positive and highly significant correlations were noted between CBSD root incidence (CBSD ri ) and CBSD rs (r = 0.90***). Significant positive correlations were also noted between CBSD foliar severity at 3 months (CBSD3s ) and CBSD foliar incidence at 6 months (CBSD6i ) (r = 0.77***), CBSD3s and CBSD rs (r = 0.35***). Fresh root weight (Fresh RW ) negatively correlated with CBSD ri and CBSD rs , respectively (r = -0.21*** and r = -0.22***). Similarly, CBSD3s correlated negatively with cassava mosaic disease severity at 3 (CMD3s ) and 6 months (CMD6s ), respectively (r = -0.25*** and r = -0.21***). Fifteen clones were selected using a non-weighted summation selection index for further screening. In conclusion, results revealed that the elite Nigerian accessions exhibited significant susceptibility to CBSD within 2 years of evaluation period. It is expected that this information will aid future breeding decisions for the improvement of CBSD resistance among the Nigerian cassava varieties.

7.
Plants (Basel) ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374402

RESUMEN

Genomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

8.
BMC Plant Biol ; 20(1): 3, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898489

RESUMEN

BACKGROUND: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.


Asunto(s)
Ipomoea batatas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos/metabolismo , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
9.
Gates Open Res ; 3: 83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32537562

RESUMEN

This study investigated the phenotypic variation of continuous storage root formation and bulking (CSRFAB) growth patterns underlying the development of sweetpotato genotypes for identification of potential varieties adapted to piecemeal harvesting for small scale farmers. The research was conducted between September 2016 and August 2017 in Uganda. Genotypes from two distinct sweetpotato genepool populations (Population Uganda A and Population Uganda B) comprising 130 genotypes, previously separated using 31 simple sequence repeat (SSR) markers were used. Measurements (4 harvest times with 4 plants each) were repeated on genotypes in a randomized complete block design with 2 replications in 2 locations for 2 seasons. We developed a scoring scale of 1 to 9 and used it to compare growth changes between consecutive harvests. Data analysis was done using residual or restricted maximum likelihood (REML). Data showed a non-linear growth pattern within and between locations, seasons, and genotypes for most traits. Some genotypes displayed early initiation and increase of bulking, while others showed late initiation. Broad sense heritability of CSRFAB was low due to large GxE interactions but higher in other traits  probably due to high genetic influence and the effectiveness of the methodology. A high level of reproducibility (89%) was observed comparing 2016B and 2017A seasons (A and B are first and second season, respectively) at the National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda. Choosing CSRFAB genotypes can more than double the sweetpotato production (average maximum yield of 13.1 t/ha for discontinuous storage root formation and bulking (DSRFAB) versus 28.6 t/ha for CSRFAB, demonstrating the importance of this underresearched component of storage root yield.

10.
Arch Virol ; 162(5): 1393-1396, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28070648

RESUMEN

Four isolates of a bipartite begomovirus from naturally infected Deinbollia borbonica plants exhibiting yellow mosaic symptoms in Kenya and Tanzania were molecularly characterised. The DNA-A was most closely related to that of tomato leaf curl Mayotte virus (AM701764; 82%), while the DNA-B shared the highest nucleotide sequence identity with that of East African cassava mosaic virus (AJ704953) at 65%. Based on the current ICTV species demarcation criterion for the genus Begomovirus (≥91% sequence identity for the complete DNA-A), we report the full-length genome sequence of this novel bipartite begomovirus. The results reveal additional diversity and reservoir hosts of begomoviruses in East Africa.


Asunto(s)
Begomovirus/genética , ADN Viral/genética , Genoma Viral/genética , Enfermedades de las Plantas/virología , Sapindaceae/virología , Secuencia de Bases , Begomovirus/clasificación , Begomovirus/aislamiento & purificación , Kenia , Virus del Mosaico/genética , Filogenia , Análisis de Secuencia de ADN , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...