Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(21): 26093-26103, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204834

RESUMEN

Direct electrification of oxygen-associated reactions contributes to large-scale electrical storage and the launch of the green hydrogen economy. The design of the involved catalysts can mitigate the electrical energy losses and improve the control of the reaction products. We evaluate the effect of the interface composition of electrocatalysts on the efficiency and productivity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), both mechanistically and at device levels. The ORR and OER were benchmarked on mesoporous nickel(II) oxide and nickel cobaltite (NiO and NiCo2O4, respectively) obtained by a facile template-free hydrothermal synthesis. Physicochemical characterization showed that both NiO and NiCo2O4 are mesoporous and have a cubic crystal structure with abundant surface hydroxyl species. NiCo2O4 showed higher electrocatalytic activity in OER and selectivity to water as the terminal product of ORR. On the contrary, ORR over NiO yielded hydroxyl radicals as products of a Fenton-like reaction of H2O2. The product selectivity in ORR was used to construct two electrolyzers for electrified purification of oxygen and generation of hydroxyl radicals.

2.
Mater Today Bio ; 19: 100574, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36852226

RESUMEN

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis. Early diagnosis and treatment of infection reduce risk of complications and support wound healing. Methods for monitoring of wound pH can facilitate early detection of infection. Here we show a novel strategy for integrating pH sensing capabilities in state-of-the-art hydrogel-based wound dressings fabricated from bacterial nanocellulose (BC). A high surface area material was developed by self-assembly of mesoporous silica nanoparticles (MSNs) in BC. By encapsulating a pH-responsive dye in the MSNs, wound dressings for continuous pH sensing with spatiotemporal resolution were developed. The pH responsive BC-based nanocomposites demonstrated excellent wound dressing properties, with respect to conformability, mechanical properties, and water vapor transmission rate. In addition to facilitating rapid colorimetric assessment of wound pH, this strategy for generating functional BC-MSN nanocomposites can be further be adapted for encapsulation and release of bioactive compounds for treatment of hard-to-heal wounds, enabling development of novel wound care materials.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30959939

RESUMEN

We report the formation of mesoporous films consisting of SBA-15 particles grown directly onto substrates and their usage as catalysts in esterification of acetic acid and ethanol. The film thickness was altered between 80 nm and 750 nm by adding NH4F to the synthesis solution. The salt also affects the formation rate of the particles, and substrates must be added during the formation of the siliceous network in the solution. Various substrate functionalizations were tested and hydrophobic substrates are required for a successful film growth. We show that large surfaces (> 75 cm²), as well as 3D substrates, can be homogenously coated. Further, the films were functionalized, either with acetic acid through co-condensation, or by coating the films with a thin carbon layer through exposure to furfuryl alcohol fumes followed by carbonization and sulfonation with H2SO4. The carbon-coated film was shown to be an efficient catalyst in the esterification reaction with acetic acid and ethanol. Due to the short, accessible mesopores, chemical variability, and possibility to homogenously cover large, rough surfaces. the films have a large potential for usage in various applications such as catalysis, sensing, and drug delivery.

4.
J Colloid Interface Sci ; 546: 163-173, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30913490

RESUMEN

A hybrid catalyst consisting of Zr-doped mesoporous silica (Zr-SBA-15) supports with intergrown Cu nanoparticles was used to study the effects of a catalyst's chemical states on CO2 hydrogenation. The chemical state of the catalyst was altered by using tetraethyl orthosilicate (TEOS) or sodium metasilicate (SMS) as the silica precursor in the synthesis of the Zr-SBA-15 framework, and infiltration (Inf) or evaporation induced wetness impregnation (EIWI) as the Cu loading method. As a result, the silica precursor mainly affects the activity of the catalyst whereas the Cu loading method alters the selectivity of the products. TEOS materials exhibit a higher catalytic activity compared to SMS materials due to different Zr dispersion and bonding to the silica matrix. EIWI catalysts display selectivity for methanol formation, while the Inf ones enable methanol conversion to DME. This is correlated to a higher Zr content and lower Cu oxidation states of EIWI prepared catalysts.

5.
J Colloid Interface Sci ; 521: 183-189, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29567606

RESUMEN

In situ attenuated total reflectance Fourier transform infrared spectroscopy is used to monitor the chemical evolution of the mesoporous silica SBA-15 from hydrolysis of the silica precursor to final silica condensation after the particle formation. Two silica precursors, tetraethyl orthosilicate (TEOS) or sodium metasilicate (SMS) were used, and the effects of additive (heptane and NH4F) concentrations were studied. Five formation stages are identified when TEOS is used as the precursor. The fourth stage correlates with the appearance and evolution of diffraction peaks recorded using in situ small angle X-ray diffraction. Details of the formed silica matrix are observed, e.g. the ratio between six-fold cyclic silica rings and linear bonding increases with the NH4F concentration. The TEOS hydrolysis time is independent of the NH4F concentration for small amounts of heptane, but is affected by the size of the emulsion droplets when the heptane amount increases. Polymerization and condensation rates of both silica precursors are affected by the salt concentration. Materials synthesized using SMS form significantly faster compared to TEOS-materials due to the pre-hydrolysis of the precursor. The study provides detailed insights into how the composition of the synthesis solution affects the chemical evolution and micellar aggregation during formation of mesoporous silica.

6.
J Phys Condens Matter ; 30(13): 135901, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29460845

RESUMEN

The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X = Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for [Formula: see text].

7.
Phys Rev Lett ; 117(20): 205502, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886477

RESUMEN

We develop a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti_{1-x}Al_{x}N alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy corresponding to the true equilibrium state of the system. We demonstrate that the vibrational contribution including anharmonicity and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti_{1-x}Al_{x}N alloy, lowering the maximum temperature for the miscibility gap from 6560 to 2860 K. Our local chemical composition measurements on thermally aged Ti_{0.5}Al_{0.5}N alloys agree with the calculated phase diagram.

8.
Biomater Sci ; 3(1): 103-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26214194

RESUMEN

Targeted cancer therapies are currently a strong focus in biomedical research. The most common approach is to use nanocarrier-based targeting to specifically deliver conventional anticancer drugs to enhance their therapeutic efficacy, increase bioavailability, and decrease the side-effects on normal cells. A step further towards higher specificity and efficacy would be to employ specific novel drugs along with specific nanocarrier-based targeting. Our recent studies have demonstrated that a plant-derived diterpenoid compound, anisomelic acid (AA), induces apoptosis in cervical cancer cells. In this work, we describe the development of a folic acid (FA)-targeted AA delivery system using chitosan-coated rod-shaped mesoporous silica particles (Chitosan-NR-MSP). The cellular internalization and uptake enhancement of the FA-Chitosan-NR-MSP towards cancerous folate receptor (FR)-positive (SiHa and HeLa) and/or normal FR-negative (HEK 293) cells were assessed, which indicated that the intracellular uptake of FA-conjugated Chitosan-NR-MSP was more target-specific. Furthermore, the induction of apoptosis by AA-loaded chitosan-coated rod-shaped particles on SiHa cells was studied. By employing caspase-3 activation and PARP cleavage as measure of apoptosis, the FA-particle mediated AA treatment was clearly more effective, significantly enhancing apoptosis in comparison to non-targeted Chitosan-NR-MSP or free AA in SiHa cells, suggesting that the FA-Chitosan-NR-MSPs can be potentially utilized as a drug delivery system for cervical cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 3/química , Caspasa 3/metabolismo , Quitosano/química , Diterpenos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Nanotubos/química , Dióxido de Silicio/química , Antineoplásicos/química , Apoptosis , Diterpenos/química , Células HeLa , Humanos , Porosidad
9.
J Colloid Interface Sci ; 413: 1-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24183423

RESUMEN

Mesoporous silica films consisting of a monolayer of separated SBA-15 particles with unusually wide and short pores grown on silicon wafers have been fabricated in a simple single-pot-synthesis, and the formation of the films has been studied. A recipe for synthesizing mesoporous silica rods with the addition of heptane and NH4F at low temperature was used and substrates were added to the synthesis solution during the reaction. The films are ~90 nm thick, have a pore size of 10.7-13.9 nm depending on the hydrothermal treatment time and temperature, and a pore length of 200-400 nm. All pores are parallel to the substrate, open, and easy to access, making them suitable for applications such as catalyst hosts and gas separation. The growth of the films is closely correlated to the evolution of the mesoporous silica particles. Here, we have studied the time for adding substrates to the synthesis solution, the evolution of the films with time during formation, and the effect of hydrothermal treatment. It was found that the substrates should be added within 30-60s after turning off the stirring and the films are formed within 10 min after addition to the synthesis solution. The study has yielded a new route for synthesizing mesoporous silica films with a unique morphology.


Asunto(s)
Dióxido de Silicio/síntesis química , Compuestos de Amonio , Frío , Fluoruros/química , Heptanos/química , Microscopía Electrónica de Rastreo , Compuestos de Amonio Cuaternario/química , Dióxido de Silicio/química
10.
Langmuir ; 29(44): 13551-61, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24102575

RESUMEN

The knowledge of how to control the pore size and morphology of separated mesoporous silica particles is crucial for optimizing their performance in applications, such as molecular sieves and drug delivery systems. In this work, we have systematically studied the effects of various synthesis parameters to gain a deeper understanding of how particle morphologies can be altered. It was found that the morphology for isolated particles of SBA-15 type, with unusually short and wide pores, could be altered from rods to platelets by variations in the NH4F concentration. The pore length is nearly constant (~300 nm) for the different morphologies, but the particle width is increasing from 200 nm to >3 µm when decreasing the amount of NH4F, and the pore size can be tuned between 10 and 13 nm. Furthermore, other synthesis parameters such as heptane concentration, pH, silica precursor, and additions of ions have also been studied. The trend regarding particle width is independent of heptane concentration, at the same time as heptane increases the particle length up to a plateau value of ~500 nm. In all, parameters controlling particle width, length, and pore size have been separated in order to evaluate their function in the particle formation. Additionally, it was found that the formation time of the particles is strongly affected by the fluoride ion concentration, and a mechanism for particle formation for this system, where micelles transform from a foam, to multilamellar vesicles, and finally to cylindrical micelles, is suggested.


Asunto(s)
Dióxido de Silicio/química , Compuestos de Amonio , Fluoruros/química , Heptanos/química , Ácido Clorhídrico/química , Porosidad , Compuestos de Amonio Cuaternario/química , Temperatura
11.
Nanoscale Res Lett ; 7(1): 358, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22747910

RESUMEN

In nanomedicine, physicochemical properties of the nanocarrier affect the nanoparticle's pharmacokinetics and biodistribution, which are also decisive for the passive targeting and nonspecific cellular uptake of nanoparticles. Size and surface charge are, consequently, two main determining factors in nanomedicine applications. Another important parameter which has received much less attention is the morphology (shape) of the nanocarrier. In order to investigate the morphology effect on the extent of cellular internalization, two similarly sized but differently shaped rod-like and spherical mesoporous silica nanoparticles were synthesized, characterized and functionalized to yield different surface charges. The uptake in two different cancer cell lines was investigated as a function of particle shape, coating (organic modification), surface charge and dose. According to the presented results, particle morphology is a decisive property regardless of both the different surface charges and doses tested, whereby rod-like particles internalized more efficiently in both cell lines. At lower doses whereby the shape-induced advantage is less dominant, charge-induced effects can, however, be used to fine-tune the cellular uptake as a prospective 'secondary' uptake regulator for tight dose control in nanoparticle-based drug formulations.

12.
Colloids Surf B Biointerfaces ; 100: 22-30, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22750108

RESUMEN

Immobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for the enzymatic activity; however, less focus has been given to the influence of the particle size. In this work the effect of particle size and particle morphology on the immobilization of lipase from Mucor miehei and Rhizopus oryzae have been investigated. Three kinds of mesoporous silica, all with 9 nm pores but with varying particle size (1000 nm, 300 nm and 40 nm) have been synthesized and were used as host for the lipases. The two lipases, which have the same molecular size but widely different isoelectric points, were immobilized into the silica particles at varied pH values within the interval 5-8. The 300 nm particles were proven to be the most suitable carrier with respect to specific activity for both enzymes. The lipase from M. miehei was more than four times as active when immobilized at pH 8 compared to free in solution whereas the difference was less pronounced for the R. oryzae lipase.


Asunto(s)
Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Lipasa/química , Mucor/química , Rhizopus/química , Adsorción , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Microscopía Electrónica de Rastreo , Peso Molecular , Mucor/enzimología , Nitrofenoles/química , Tamaño de la Partícula , Porosidad , Rhizopus/enzimología , Dispersión del Ángulo Pequeño , Dióxido de Silicio/química , Temperatura , Difracción de Rayos X
13.
Langmuir ; 27(8): 4994-9, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21413751

RESUMEN

Dispersed SBA-15 rods have been synthesized with varying lengths, widths, and pore sizes in a low-temperature synthesis in the presence of heptane and NH(4)F. The pore size of the material can systematically be varied between 11 and 17 nm using different hydrothermal treatment times and/or temperatures. The particle length (400-600 nm) and width (100-400 nm) were tuned by varying the HCl concentration. All the synthesized materials possess a large surface area of 400-600 m(2)/g and a pore volume of 1.05-1.30 cm(3). A mechanism for the effect of the HCl concentration on the particle morphology is suggested. Furthermore, it is shown that the reaction time can be decreased to 1 h, with well-retained pore size and morphology. This work has resulted in SBA-15 rods with the largest pore size reported for this morphology.

14.
Materials (Basel) ; 4(9): 1599-1618, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28824159

RESUMEN

We review results of recent combined theoretical and experimental studies of Ti1-xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place. The strong dependence of the elastic properties and sound wave anisotropy on the Al-content offers detailed understanding of the spinodal decomposition and age hardening in Ti1-xAlxN alloy films and multilayers. TiAlN/TiN multilayers can further improve the hardness and thermal stability compared to TiAlN since they offer means to influence the kinetics of the favorable spinodal decomposition and suppress the detrimental transformation to w-AlN. Here, we show that a 100 degree improvement in terms of w-AlN suppression can be achieved, which is of importance when the coating is used as a protective coating on metal cutting inserts.

15.
Nano Lett ; 9(8): 3082-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19606848

RESUMEN

Herein we report on the extraordinary thermal stability of approximately 35 nm Mg-nanograins that constitute the matrix of a Ti(2)AlC-Mg composite that has previously been shown to have excellent mechanical properties. The microstructure is so stable that heating the composite three times to 700 degrees C, which is 50 degrees C over the melting point of Mg, not only resulted in the repeated melting of the Mg, but surprisingly and within the resolution of our differential scanning calorimeter, did not lead to any coarsening. The reduction in the Mg melting point due to the nanograins was approximately 50 degrees C. X-ray diffraction and neutron spectroscopy results suggest that thin, amorphous, and/or poorly crystallized rutile, anatase, and/or magnesia layers separate the Mg nanograins and prevent them from coarsening. Clearly that layer is thin enough, and thus mechanically robust enough, to survive the melting and solidification stresses encountered during cycling. Annealing in hydrogen at 250 degrees C for 20 h, also did not seem to alter the grain size significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA