Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(12): 124301, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32241139

RESUMEN

Multi-electron coincidence measurements have been performed at the photon energies for the core-to-valence (1s → π*) and core-to-Rydberg (1s → 3sσ and 3pπ) resonant excitations in N2 in order to investigate the dynamics of multiple Auger-electron emissions from these core-excited states in detail. Peaks due to slow electrons from superexcited atomic fragments are observed in the decay processes by emission of two or three Auger electrons, indicating stepwise (cascade) multiple Auger decays that involve faster dissociations than electronic relaxations. Energy partitions between the emitted electrons enable us to reveal the detailed decay mechanisms for these processes. Branching ratios among the decays by emission of one, two, or three Auger electrons and those between the simultaneous (direct) and stepwise (cascade) processes have been determined for each of the core-excited states. Branching ratios of decay channels resulting in molecular or fragment ions have also been substantiated.

2.
J Chem Phys ; 149(24): 244302, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30599704

RESUMEN

The cross sections for the formation of the H(2p) and H(2s) atoms, σ 2p and σ 2s , respectively, in photoexcitation of C2H2 were obtained in an absolute scale for studying formation and decay of superexcited states in the extreme ultraviolet range. Several superexcited states of C2H2 including multiply excited states were found in the curve of the σ 2p cross sections as a function of the incident photon energy. The same states seem to contribute to the variation in the σ 2s cross sections as well, which can be ascribed to the non-adiabatic transitions between the 2p and 2s channels. The Σ/Π symmetry-resolved cross sections for the H(2s) atom formation, σ 2 s Σ and σ 2 s Π , were also obtained on an absolute scale. The coupling between the Σ u + 1 and 1Π u states was found to be small.

3.
J Chem Phys ; 139(16): 164307, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24182029

RESUMEN

The absolute cross sections for the formation of the H(2s) and H(2p) atoms, σ2s and σ2p, respectively, in photoexcitation of CH4 and NH3 were measured in the range of the incident photon energy 15-48 eV for studying superexcited states of the molecules. The same superexcited states were found to contribute to the σ2s and σ2p cross sections. It was concluded that the non-adiabatic transitions play a significant role during the dissociation of the superexcited states and ionic states.

4.
Rev Sci Instrum ; 81(6): 063108, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20590226

RESUMEN

A novel method of spectroscopy for highly excited states of molecules in the valence excitation range has been established through the detection of metastable hydrogen atoms in the 2s state formed by photoexcitation. The detector for the metastable hydrogen atom is composed of a stack of parallel plate electrodes that creates a localized electric field and triggers the emission of the Lyman-alpha photon from the atom and a chevron pair of microchannel plates that detects the photon. For linear molecules, the angle-resolved detection of the metastable hydrogen atom enables us to measure cross sections in which electronic symmetries of highly excited molecular states are resolved. Such symmetry-resolved cross section measurements were carried out for doubly excited states of H(2).

5.
Phys Rev Lett ; 103(17): 173002, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19905753

RESUMEN

The angular distribution of two Lyman-alpha photons, i.e., the probability density that two Lyman-alpha photons are emitted in given directions, in the photodissociation of a hydrogen molecule have been measured at the hydrogen gas pressures of 0.40 and 0.13 Pa. We have found that the experimental angular distributions seem to approach the theoretical one by our group [J. Phys. B 40, 617 (2007)] with decreasing pressure, which indicates the generation of the entangled pair of H(2p) atoms shown in the theory and the role of the reaction of the entangled pair of H(2p) atoms with an H2 molecule that efficiently changes the entanglement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...