Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(5): 2667-2676, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31464301

RESUMEN

The emergence of X-ray free electron lasers (X-FELs) has made it possible to probe structural dynamics on the femtosecond timescale. This extension of experimental capabilities also calls for a simultaneous development in theory to help interpret the underlying structure and dynamics encoded within the experimental observable. In the ultrafast regime this often requires a time-dependent theoretical treatment that describes nuclear dynamics beyond the Born-Oppenheimer approximation. In this work, we perform quantum dynamics simulations based upon time-evolving Gaussian basis functions (GBFs) and simulate the ultrafast X-ray Absorption Near-Edge Structure (XANES) spectra of photoexcited pyrazine including two strongly coupled electronically excited states and four normal mode degrees of freedom. Two methods to simulate the excited state XANES spectra are applied, the first is based upon the multi-configurational second order perturbation theory restricted active space (RASPT2) method and the second uses a combination of the maximum overlap method (MOM) and time-dependent density functional theory (TDDFT). We demonstrate that despite the simplicity of the MOM/TDDFT method, it captures several qualitative features of the RASPT2 simulations at much reduced computational effort. However, features such as the conical intersection are a particular exception as they require a multi-configurational treatment. For the nuclear dynamics, we demonstrate that even a small number of GBFs can provide reasonable description of the spectroscopic observable. This work provides perspectives for computationally efficient approaches important for addressing larger systems.

2.
J Chem Phys ; 151(11): 114117, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31542028

RESUMEN

The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer.

3.
J Chem Phys ; 149(4): 044307, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30068152

RESUMEN

The prototypical photoinduced dissociation of Fe(CO)5 in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)5 successively dissociates to Fe(CO)4 and Fe(CO)3 along a pathway where both fragments retain the singlet multiplicity of Fe(CO)5. The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)4 and Fe(CO)3 with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valence-orbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3σ inner-valence and Fe 3p core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for how charge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy.

4.
J Chem Phys ; 146(21): 211103, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595420

RESUMEN

We prove the hitherto hypothesized sequential dissociation of Fe(CO)5 in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)4 within the temporal resolution of the experiment and further to Fe(CO)3 within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)5, Fe(CO)4, and Fe(CO)3 showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)5 complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes.

5.
Struct Dyn ; 3(4): 043204, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26958587

RESUMEN

We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.

6.
Phys Chem Chem Phys ; 17(40): 27145-53, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26417728

RESUMEN

To probe the influence of hydrogen bonding on the electronic structure of ammonia, gas phase and aqueous NH3 have been investigated using soft X-ray absorption (XAS), resonant inelastic soft X-ray scattering (RIXS), and electronic structure calculations including dynamical effects. Strong spectral differences in the XAS scans as well as in the RIXS spectra between gas phase and aqueous NH3 are attributed to orbital mixing with the water orbitals, dipole-dipole interactions, differences in vibronic coupling, and nuclear dynamics on the time-scale of the RIXS process. All of these effects are consequences of hydrogen bonding and the impact of the associated orbitals, demonstrating the power of XAS and RIXS as unique tools to study hydrogen bonding in liquids.

7.
Nature ; 520(7545): 78-81, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832405

RESUMEN

Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion. Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site that need to be controlled to optimize complexes for photocatalytic hydrogen production and selective carbon-hydrogen bond activation. An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)5 in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)4 species, a homogeneous catalyst with an electron deficiency at the Fe centre, in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)5 (refs 4, 16 - 20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.

9.
J Chem Phys ; 138(6): 064304, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23425468

RESUMEN

The zero-field splitting (ZFS) is an important quantity in the electron spin Hamiltonian for S = 1 or higher. We report calculations of the ZFS in some six- and five-coordinated nickel(II) complexes (S = 1), using different levels of theory within the framework of the ORCA program package [F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)]. We compare the high-end ab initio calculations (complete active space self-consistent field and n-electron valence state perturbation theory), making use of both the second-order perturbation theory and the quasi-degenerate perturbation approach, with density functional theory (DFT) methods using different functionals. The pattern of results obtained at the ab initio levels is quite consistent and in reasonable agreement with experimental data. The DFT methods used to calculate the ZFS give very strongly functional-dependent results and do not seem to function well for our systems.

10.
J Phys Chem B ; 116(46): 13757-64, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23106147

RESUMEN

Resonant inelastic soft X-ray scattering (RIXS) has been used to study the electronic structure of glycine and lysine in aqueous solution. Upon variation of the pH value of the solution from acidic to basic, major changes of the nitrogen K edge RIXS data are observed for both amino acids, which are associated with the protonation and deprotonation of the amino groups. The experimental results are compared with simulations based on density functional theory, yielding a detailed understanding of the spectral changes, as well as insights into the ultrafast proton dynamics in the intermediate core-excited/ionized state of the RIXS process.


Asunto(s)
Glicina/química , Lisina/química , Protones , Teoría Cuántica , Agua/química , Concentración de Iones de Hidrógeno , Dispersión de Radiación , Rayos X
11.
Phys Rev Lett ; 103(1): 013001, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19659142

RESUMEN

Time-resolved valence band photoelectron spectroscopy with a temporal resolution of 135 fs is used to map the entire occupied valence electronic structure of photoexcited gas-phase Br2 molecules during dissociation. The observed shifting and mixing of valence energy levels defines a transition period where the system appears to be intermediate between atoms and molecules. The surprisingly short bond breaking or dissociation time is determined by monitoring in real time how the photoelectron multiplet structure of the free atom arises from the valence states of the photoexcited molecule.

12.
J Chem Phys ; 130(12): 124708, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334873

RESUMEN

The local structure of the Au(111)(square root(3) x square root(3))R30 degrees-methylthiolate surface phase has been investigated by S K-edge near-edge s-ray absorption fine structure (NEXAFS) both experimentally and theoretically and by experimental normal-incidence x-ray standing waves (NIXSW) at both the C and S atomic sites. NEXAFS shows not only excitation into the intramolecular sigma(*) S-C resonance but also into a sigma(*) S-Au orbital perpendicular to the surface, clearly identifying the local S headgroup site as atop a Au atom. Simulations show that it is not possible, however, to distinguish between the two possible adatom reconstruction models; a single thiolate species atop a hollow-site Au adatom or a dithiolate moiety comprising two thiolate species bonded to a bridge-bonded Au adatom. Within this dithiolate moiety a second sigma(*) S-Au orbital that lies near parallel to the surface has a higher energy that overlaps that of the sigma(*) S-C resonance. The new NIXSW data show the S-C bond to be tilted by 61 degrees relative to the surface normal, with a preferred azimuthal orientation in <211>, corresponding to the intermolecular nearest-neighbor directions. This azimuthal orientation is consistent with the thiolate being atop a hollow-site Au adatom, but not consistent with the originally proposed Au-adatom-dithiolate moiety. However, internal conformational changes within this species could, perhaps, render this model also consistent with the experimental data.

13.
J Chem Phys ; 128(18): 184709, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18532838

RESUMEN

The molecular and electronic surface structure of a triarylamine based hole-conductor (HC) molecule evaporated onto rutile TiO2(110) single crystal is investigated by means of synchrotron light based photoelectron spectroscopy and x-ray absorption spectroscopy in combination with calculations based on density functional theory. Different amounts of the HC molecule was evaporated spanning the monolayer to multilayer region. The molecular surface structure is investigated and the results indicate that no specific covalent chemical bonding is formed and that the plane formed by the different nitrogens in the HC molecules has a rather small angle versus the TiO2 substrate surface plane. Some molecular ordering also persists in the multilayer region. The experimental core level spectra, valence level spectra, and the N 1s x-ray absorption spectroscopy spectra are well modeled by calculations on an individual molecule. Interestingly, the formation of the TiO2HC interface results in significant binding energy shifts in core levels and valence levels shifting all peaks of a the HC material to the same extent. Smaller shifts were also observed in the substrate core level peaks. The shift is discussed in terms of nanoscale energy level bending and final state hole screening. With respect to electronic applications, specifically in a solid state dye-sensitized solar cell, it is argued that the observed energy level alignment at the TiO2HC interface can act as a hole trap.

14.
J Chem Phys ; 126(24): 244303, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17614545

RESUMEN

The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels.

15.
J Chem Phys ; 126(15): 154508, 2007 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-17461648

RESUMEN

The isotope quantum effects in the ground-state electron momentum density of water are studied at temperatures ranging from 5 to 90 degrees C by combining Compton scattering experiments utilizing synchrotron radiation and computational analysis within density functional theory. We observe clear differences in the momentum density between normal and heavy water at room temperature, which are interpreted as predominantly reflecting intramolecular structural differences. The changes in the momentum density upon increasing the temperature are found to be larger for heavy than for normal water, which is attributed primarily to temperature-induced intramolecular structural effects. Both model computations and an ab initio approach qualitatively reproduce the changes in the momentum density as a function of temperature.

16.
Phys Rev Lett ; 99(21): 217406, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-18233257

RESUMEN

We determine electron delocalization rates in liquid water and ice using core-hole decay spectroscopy. The hydrogen-bonded network delocalizes the electrons in less than 500 as. Broken or weak hydrogen bonds--in the liquid or at the surface of ice--provide states where the electron remains localized longer than 20 fs. These asymmetrically bonded water species provide electron traps, acting as a strong precursor channel to the hydrated electron.

18.
Phys Rev Lett ; 93(14): 148302, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15524849

RESUMEN

Using x-ray emission and photoemission spectroscopies to measure the occupied valence levels in a thin crystalline ice film, we resolve the ionization-induced dissociation of water in ice on a femtosecond time scale. Isotope substitution confirms proton transfer during the core-hole lifetime in spite of the nonresonant excitation. Through ab initio molecular dynamics on the core-ionized state, the dissociation and spectrum evolution are followed at femtosecond intervals. The theoretical simulations confirm the experimental analysis and allow for a detailed study of the dissociative reaction path.


Asunto(s)
Hielo , Agua/química , Fenómenos Biofísicos , Biofisica , Simulación por Computador , Enlace de Hidrógeno , Cinética , Modelos Químicos , Modelos Moleculares , Tomografía Computarizada por Rayos X
19.
Science ; 304(5673): 995-9, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15060287

RESUMEN

X-ray absorption spectroscopy and x-ray Raman scattering were used to probe the molecular arrangement in the first coordination shell of liquid water. The local structure is characterized by comparison with bulk and surface of ordinary hexagonal ice Ih and with calculated spectra. Most molecules in liquid water are in two hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond in contrast to the four hydrogen-bonded tetrahedral structure in ice. Upon heating from 25 degrees C to 90 degrees C, 5 to 10% of the molecules change from tetrahedral environments to two hydrogen-bonded configurations. Our findings are consistent with neutron and x-ray diffraction data, and combining the results sets a strong limit for possible local structure distributions in liquid water. Serious discrepancies with structures based on current molecular dynamics simulations are observed.


Asunto(s)
Agua/química , Fenómenos Químicos , Química Física , Simulación por Computador , Enlace de Hidrógeno , Hielo , Modelos Químicos , Estructura Molecular , Análisis Espectral , Espectrometría Raman , Temperatura
20.
J Synchrotron Radiat ; 8(Pt 2): 136-40, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11512711

RESUMEN

A closely integrated theoretical and experimental effort to understand chemical bonding using X-ray spectroscopic probes is presented. Theoretical techniques to simulate XAS (X-ray absorption spectroscopy), XES (X-ray emission spectroscopy), RIXS (resonant inelastic X-ray scattering) and XPS (X-ray photoelectron spectroscopy) spectra have been developed and implemented within a density functional theory (DFT) framework. In combination with new experimental techniques, such as high-resolution XAS on liquid water under ambient conditions and XES on complicated surface adsorbates, new insight into e.g. hydrogen-bonded systems is obtained. For the (3x2) overlayer structure of glycine/Cu(110), earlier work has been extended to include adsorbate-adsorbate interactions. Structures are optimized for large cluster models and for periodic boundary conditions. It is found that specific features in the spectra arise from hydrogen-bonding interactions, which thus have important effects at the molecular-orbital level. XAS on liquid water shows a pronounced pre-edge feature with significant intensity, while the spectrum of ice shows only little intensity in this region. Theoretical spectrum calculations, based on instantaneous structures obtained from molecular-dynamics (MD) simulations, show that the pre-edge feature in the liquid is caused by water molecules with unsaturated hydrogen bonding. Some aspects of the theoretical simulations will be briefly discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...