Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Chem ; 16(1): 109, 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463218

RESUMEN

This research work focuses on the synthesis, characterization through spectra (FT-IR, UV-vis, and 1H-NMR) investigations, and the use of density functional theory (DFT) along with time-dependent density functional theory (TD-DFT) to investigate the electronic, structural, reactivity, photophysical properties, and the photovoltaic properties of a novel (E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1,3-dione. The structure of the synthesized compound was modeled using the Gaussian09W and GaussView6.0.16 softwares employing B3LYP and 6-31 + G(d) basis set. The DFT studies was performed in order to investigate the Frontier Molecular Orbital (FMO), Natural Bond Orbital (NBO), charge distribution, Nonlinear Optics (NLO), and stability of the titled molecule. The HOMO-LUMO energy gap which corresponds to the difference between HOMO and LUMO energies of the studied compound was found to be 2.806 eV indicating stiff and smooth nature of the titled molecule. This accounts for the less stability and high chemical reactivity of the compound. The photovoltaic properties were conducted to evaluate the light harvesting efficiency (LHE), short circuit current density (JSC), Gibbs free energy of injection ([Formula: see text]), open cycled voltage (VOC) and Gibbs free energy regeneration ([Formula: see text]) and solar cell conversion efficiency. Interestingly, the results obtained were found to be in good agreement with other experimental and computational findings.

2.
Heliyon ; 7(7): e07544, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34345733

RESUMEN

The geometry, frontier molecular orbitals (FMOs), vibrational, NBO analysis, and molecular docking simulations of aflatoxins (B1, B2, M1, M2, G1, G2), zearalenone (ZEA) emodin (EMO), alternariol (AOH), alternariol monoethyl ether (AMME), and tenuazonic acid (TeA) mycotoxins have been extensively theoretically studied and discussed based on quantum density functional theory calculations using Gaussian 16 software package. The theoretical computation for the geometry optimization, NBOs, and the molecular docking interaction was conducted using Density Functional Theory with B3LYP/6-31+G(d,p), NBO program, and AutoDock Vina tools respectively. Charge delocalization patterns and second-order perturbation energies of the most interacting natural bond orbitals (NBOs) of these mycotoxins have also been computed and predicted. Interestingly, among the mycotoxins investigated, aflatoxin G1 is seen to give the strongest stabilization energy while Zearalenone shows the highest tendency to accept electron(s) and emodin, an emerging mycotoxin gave the best binding pose within the androgen receptor pocket with a mean binding affinity of -7.40 kcal/mol.

3.
Heliyon ; 7(2): e06138, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33553781

RESUMEN

The aromaticity and CDFT properties of naphthalene and its aza-derivatives were theoretically investigated using density functional theory (DFT) electronic structure method. The reactivity and chemistry of Azanaphthalene (1-AN), 1, 2-diazanaphthalene (1, 2-DAN), 1, 3-diazanaphthalene (1, 3-DAN), 1, 4-diazanaphthalene (1,4-DAN), 1, 5-diazanaphthalene (1, 5-DAN), 1, 6-diazanaphthalene (1, 6-DAN), 1, 7-diazanaphthalene (1,7-DAN) and 1, 8-diazanaphthalene (1, 8-DAN) were thoroughly explored and predicted focusing more on the fuzzy atomic space analysis, quantum chemical descriptors (CDFT), natural bond orbital (NBO), and structural electronic properties. The CDFT is focused on predicting the condensed Fukui function and dual descriptors along with condensed local electrophilicity and nucleophilicity investigation. From the aromaticity computational study, 1,7-DAN gave PDI, FLU, FLU- π , PLR, HOMA, BIRD and LOLIPOP values of approximately one (1) was found to be the most aromatic in the group, and strongest π -stacking ability. The aromaticity follows the trend: 1, 7-DAN > 1, 8-DAN > 1, 5-DAN > 1, 6-DAN > 1, 4-DAN > 1, 2-DAN > 1-AN > naphthalene. The second order perturbation energy NBO analysis revealed that the 3 highest stabilization energies in the molecules are C6-Na to C3-C4 ( π ∗ - π ∗ 236.90 kcal/mol) of 1, 6-DAN, C3-C4 to C1-C2 ( π ∗ - π ∗ 236.37 kcal/mol) of 1-AN and C7-N10 to C2-C4 ( π ∗ - π ∗ 235 kcal/mol) of 1, 3-DAN.

4.
RSC Adv ; 11(45): 28433-28446, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35480716

RESUMEN

All dyes conduct but at different degrees of absorption; it is interesting to study the degree of conductivity and absorptivity of novel reactive azo-dyes in respect to dye-sensitized solar cells (DSSCs) to ascertain their viability for such applications. In this study, four novel reactive azo-dyes were experimentally synthesized from p-aminobenzaldehyde, 4-amino-3-nitrobenzaldehyde, and aniline through series of condensation and coupling reactions. The various functional groups, molecular connectivities, and molecular weight of the various fragments of the synthesized dyes were elucidated using the GC-MS, FT-IR, UV-vis, and NMR respectively. The experimentally determined structures were modeled and investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) approaches to computationally compute the electronic structure properties, reactivity, absorption and solvatochromism in four different phases: gas, ethanol, acetone, and water, and the photovoltaic properties for possible applications in dye-sensitized solar cells (DSSCs). By comparing the HOMO (E H) and the LUMO (E L) energies from the results obtained demonstrates that dye D has the highest E L energy value of -2.48 eV with a relatively lowest E H energy value of -5.63 eV such that it lies underneath the conduction band edge of TiO2 which is necessary to enable charge regeneration. Pi-electron delocalization was observed from the natural bond orbital (NBO) calculations between the different aromatic rings with dye B and A having the relatively highest and least second-order stabilization energies between σ* → σ* and LP* → LP interacting orbitals respectively. It is also observed in all the solvents that the Gibbs free energy of injection (ΔG inject) is greater than 0.2 eV and hence, all the studied azo structures in the four phases provided efficient electron injection and light harvesting efficiency (LHE), however, the value of ΔG inject for dyes B and D is greatest in all the four phases and thus, provided the highest electron injection of all the dyes. From the fact-findings of quantum theory of atoms-in-molecules (QTAIM), dyes A and C have extra-stability due to their relatively high numbers of intramolecular H-bond interactions along with some additional intra-atomic bonding between atoms within the studied compounds. Hence, all the four dyes are good for DSSCs applications.

5.
Heliyon ; 6(12): e05783, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33385089

RESUMEN

This study explains the vibration and interaction of p-xylene and effect of three elements (fluorine, chlorine and bromine) of the halogen family substitution on it. Basic chemistry of four, compounds p-xylene (PX); 3,6-diflouro-p-xylene (DFPX); 3,6-dichloro-p-xylene (DCPX) and 3,6-dibromo-p-xylene (DBPX) has been explained extensively using theoretical approach. Vibrational energy distribution analysis (VEDA) software was used to study the potential energy distribution (PED) analysis, bond length, bond angles and dihedral angles of PX, DFPX, DCPX, DBPX after optimization with GAUSSIAN 09 software. The trend in chemical reactivity and stability of the studied compounds was observed to show increasing stability and decreasing reactivity moving from DBPX, DCPX, DFPX to PX and this was obtained from the calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) values. Our results show that PX is the best electron donor (best nucleophile) while DBPX is the best electron acceptor (the best electrophile). We also observed that the substituted halogen increases the value of the bond angles but the effect is reduced as the size of the halogen increases. The maximum intensity and the frequency value for the maximum intensity of the different compounds was determined using the VEDA 04 software. From our natural bond orbital (NBO) 7.0 program analysis, the studied compounds are said to show biological activities as well as the intramolecular hyperconjugative interactions responsible for stabilizing the compounds. The NBO results also revealed that the non-bonding interaction existing between the lone pair electron on the halogen atoms and the aromatic ring increases the stability of the halogen substituted para-xylene molecules. Multiwfn: A Multifunctional Wavefunction Analyzer was used for the spectroscopic plots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...