Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Dev Res ; 80(5): 566-572, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30893501

RESUMEN

There is an urgent need for new treatments effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. The 8-hydroxyquinoline series is a privileged scaffold with anticancer, antifungal, and antibacterial activities. We conducted a structure-activity relationship study of the series regarding its antitubercular activity using 26 analogs. The 8-hydroxyquinolines showed good activity against M. tuberculosis, with minimum inhibitory concentrations (MIC90) of <5 µM for some analogs. Small substitutions at C5 resulted in the most potent activity. Substitutions at C2 generally decreased potency, although a sub-family of 2-styryl-substituted analogs retained activity. Representative compounds demonstrated bactericidal activity against replicating M. tuberculosis with >4 log kill at 10× MIC over 14 days. The majority of the compounds demonstrated cytotoxicity (IC50 of <100 µM). Further development of this series as antitubercular agents should address the cytotoxicity liability. However, the 8-hydroxyquinoline series represents a useful tool for chemical genomics to identify novel targets in M. tuberculosis.


Asunto(s)
Antituberculosos/síntesis química , Hidroxiquinolinas/síntesis química , Mycobacterium tuberculosis/crecimiento & desarrollo , Oxiquinolina/análogos & derivados , Animales , Antituberculosos/química , Antituberculosos/farmacología , Chlorocebus aethiops , Células Hep G2 , Humanos , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Células Vero
2.
PLoS One ; 11(5): e0155209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171280

RESUMEN

The 2-aminothiazole series has anti-bacterial activity against the important global pathogen Mycobacterium tuberculosis. We explored the nature of the activity by designing and synthesizing a large number of analogs and testing these for activity against M. tuberculosis, as well as eukaryotic cells. We determined that the C-2 position of the thiazole can accommodate a range of lipophilic substitutions, while both the C-4 position and the thiazole core are sensitive to change. The series has good activity against M. tuberculosis growth with sub-micromolar minimum inhibitory concentrations being achieved. A representative analog was selective for mycobacterial species over other bacteria and was rapidly bactericidal against replicating M. tuberculosis. The mode of action does not appear to involve iron chelation. We conclude that this series has potential for further development as novel anti-tubercular agents.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Tiazoles/síntesis química , Tiazoles/farmacología , Animales , Antituberculosos/química , Quelantes del Hierro/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Células Vero
3.
J Med Chem ; 58(18): 7273-85, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26295286

RESUMEN

We conducted an evaluation of the phenoxyalkylbenzimidazole series based on the exemplar 2-ethyl-1-(3-phenoxypropyl)-1H-benzo[d]imidazole for its antitubercular activity. Four segments of the molecule were examined systematically to define a structure-activity relationship with respect to biological activity. Compounds had submicromolar activity against Mycobacterium tuberculosis; the most potent compound had a minimum inhibitory concentration (MIC) of 52 nM and was not cytotoxic against eukaryotic cells (selectivity index = 523). Compounds were selective for M. tuberculosis over other bacterial species, including the closely related Mycobacterium smegmatis. Compounds had a bacteriostatic effect against aerobically grown, replicating M. tuberculosis, but were bactericidal against nonreplicating bacteria. Representative compounds had moderate to high permeability in MDCK cells, but were rapidly metabolized in rodents and human liver microsomes, suggesting the possibility of rapid in vivo hepatic clearance mediated by oxidative metabolism. These results indicate that the readily synthesized phenoxyalkylbenzimidazoles are a promising class of potent and selective antitubercular agents, if the metabolic liability can be solved.


Asunto(s)
Antituberculosos/química , Bencimidazoles/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Chlorocebus aethiops , Simulación por Computador , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Permeabilidad , Ratas , Relación Estructura-Actividad , Células Vero
4.
PeerJ ; 2: e612, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25320680

RESUMEN

We demonstrated that the 3-substituted benzothiophene-1,1-dioxide class of compounds are effective inhibitors of Mycobacterium tuberculosis growth under aerobic conditions. We examined substitution at the C-3 position of the benzothiophene-1,1-dioxide series systematically to delineate structure-activity relationships influencing potency and cytotoxicity. Compounds were tested for inhibitory activity against virulent M. tuberculosis and eukaryotic cells. The tetrazole substituent was most potent, with a minimum inhibitory concentration (MIC) of 2.6 µM. However, cytotoxicity was noted with even more potency (Vero cell TC50 = 0.1 µM). Oxadiazoles had good anti-tubercular activity (MICs of 3-8 µM), but imidazoles, thiadiazoles and thiazoles had little activity. Cytotoxicity did not track with anti-tubercular activity, suggesting different targets or mode of action between bacterial and eukaryotic cells. However, we were unable to derive analogs without cytotoxicity; all compounds synthesized were cytotoxic (TC50 of 0.1-5 µM). We conclude that cytotoxicity is a liability in this series precluding it from further development. However, the series has potent anti-tubercular activity and future efforts towards identifying the mode of action could result in the identification of novel drug targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...