Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Environ Sci (China) ; 140: 12-23, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331494

RESUMEN

The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts.


Asunto(s)
Cerio , Níquel , Níquel/química , Dióxido de Carbono/química , Metano/química , Cerio/química , Carbono
2.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986022

RESUMEN

Cotton stalks-based biochars were prepared and used to synthetize Ru-supported catalysts for selective production of γ-valerolactone from levulinic acid in aqueous media. Different biochars' pre-treatments (HNO3, ZnCl2, CO2 or a combination of them) were carried out to activate the final carbonaceous support. Nitric acid treatment resulted in microporous biochars with high surface area, whereas the chemical activation with ZnCl2 substantially increases the mesoporous surface. The combination of both treatments led to a support with exceptional textural properties allowing the preparation of Ru/C catalyst with 1422 m2/g surface area, 1210 m2/g of it being a mesoporous surface. The impact of the biochars' pre-treatments on the catalytic performance of Ru-based catalysts is fully discussed.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770467

RESUMEN

CO2 emissions in the atmosphere have been increasing rapidly in recent years, causing global warming. CO2 methanation reaction is deemed to be a way to combat these emissions by converting CO2 into synthetic natural gas, i.e., CH4. NiRu/CeAl and NiRu/CeZr both demonstrated favourable activity for CO2 methanation, with NiRu/CeAl approaching equilibrium conversion at 350 °C with 100% CH4 selectivity. Its stability under high space velocity (400 L·g-1·h-1) was also commendable. By adding an adsorbent, potassium, the CO2 adsorption capability of NiRu/CeAl was boosted, allowing it to function as a dual-function material (DFM) for integrated CO2 capture and utilisation, producing 0.264 mol of CH4/kg of sample from captured CO2. Furthermore, time-resolved operando DRIFTS-MS measurements were performed to gain insights into the process mechanism. The obtained results demonstrate that CO2 was captured on basic sites and was also dissociated on metallic sites in such a way that during the reduction step, methane was produced by two different pathways. This study reveals that by adding an adsorbent to the formulation of an effective NiRu methanation catalyst, advanced dual-function materials can be designed.

4.
Sci Total Environ ; 840: 156663, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35710010

RESUMEN

The conversion of biogas, mainly formed of CO2 and CH4, into high-value platform chemicals is increasing attention in a context of low-carbon societies. In this new paradigm, acetic acid (AA) is deemed as an interesting product for the chemical industry. Herein we present a fresh overview of the current manufacturing approaches, compared to potential low-carbon alternatives. The use of biogas as primary feedstock to produce acetic acid is an auspicious alternative, representing a step-ahead on carbon-neutral industrial processes. Within the spirit of a circular economy, we propose and analyse a new BIO-strategy with two noteworthy pathways to potentially lower the environmental impact. The generation of syngas via dry reforming (DRM) combined with CO2 utilisation offers a way to produce acetic acid in a two-step approach (BIO-Indirect route), replacing the conventional, petroleum-derived steam reforming process. The most recent advances on catalyst design and technology are discussed. On the other hand, the BIO-Direct route offers a ground-breaking, atom-efficient way to directly generate acetic acid from biogas. Nevertheless, due to thermodynamic restrictions, the use of plasma technology is needed to directly produce acetic acid. This very promising approach is still in an early stage. Particularly, progress in catalyst design is mandatory to enable low-carbon routes for acetic acid production.


Asunto(s)
Biocombustibles , Carbono , Ácido Acético , Dióxido de Carbono , Vapor
5.
J Am Chem Soc ; 144(1): 446-453, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928589

RESUMEN

The active forms of Au and Pt in CeO2-based catalysts for the water-gas shift (WGS) reaction are an issue that remains unclear, although it has been widely studied. On one hand, ionic species might be responsible for weakening the Ce-O bonds, thus increasing the oxygen mobility and WGS activity. On the other hand, the close contact of Au or Pt atoms with CeO2 oxygen vacancies at the metal-CeO2 interface might provide the active sites for an efficient reaction. In this work, using in situ X-ray absorption spectroscopy, we demonstrate that both Au and Pt remain unoxidized during the reaction. Remarkable differences involving the dynamics established by both species under WGS atmospheres were recognized. For the prereduced Pt catalyst, the increase of the conversion coincided with a restructuration of the Pt atoms into cuboctahedrical metallic particles without significant variations on the overall particle size. Contrary to the relatively static behavior of Pt0, Au0 nanoparticles exhibited a sequence of particle splitting and agglomeration while maintaining a zero oxidation state despite not being located in a metallic environment during the process. High WGS activity was obtained when Au atoms were surrounded by oxygen. The fact that Au preserves its unoxidized state indicates that the chemical interaction between Au and oxygen must be necessarily electrostatic and that such an electrostatic interaction is fundamental for a top performance in the WGS process.

6.
Front Chem ; 9: 694976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307298

RESUMEN

Designing an economically viable catalyst that maintains high catalytic activity and stability is the key to unlock dry reforming of methane (DRM) as a primary strategy for biogas valorization. Ni/Al2O3 catalysts have been widely used for this purpose; however, several modifications have been reported in the last years in order to prevent coke deposition and deactivation of the samples. Modification of the acidity of the support and the addition of noble metal promoters are between the most reported strategies. Nevertheless, in the task of designing an active and stable catalyst for DRM, the selection of an appropriate noble metal promoter is turning more challenging owing to the lack of homogeneity of the different studies. Therefore, this research aims to compare Ru (0.50 and 2.0%) and Re (0.50 and 2.0%) as noble metal promoters for a Ni/MgAl2O4 catalyst under the same synthesis and reaction conditions. Catalysts were characterized by XRF, BET, XRD, TPR, hydrogen chemisorption (H2-TPD), and dry reforming reaction tests. Results show that both promoters increase Ni reducibility and dispersion. However, Ru seems a better promoter for DRM since 0.50% of Ru increases the catalytic activity in 10% and leads to less coke deposition.

7.
Front Chem ; 7: 548, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475132

RESUMEN

This work is a detailed study on how to optimize gold colloids preparation and their deposition to very different in nature carbon materials. The change of the continuous phase and its dielectric constant is used to assure the good dispersion of the hydrophilic/hydrophobic carbons and the successful transfer of the preformed small size colloids to their surface. The sintering behavior of the particles during the calcination step is also studied and the optimal conditions to reduce to a minimum the particle size increase during the protecting agent removal phase are found. The as prepared catalysts have been tested in a relevant reaction in the field of environmental catalysis such as the reduction of 4-nitrophenol leading to promising results. Overall, this work proposes an important methodology to follow when a carbonaceous material are selected as catalyst supports for green chemistry reactions.

8.
J Phys Chem B ; 118(13): 3650-60, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24611839

RESUMEN

In this work, a study for understanding the role played by [ClBmim], [BF4Bmim], [PF6Bmim], and [CH3SO3Bmim] ionic liquids (ILs) in the synthesis of zeolites is presented. The use of [ClBmim] and [CH3SO3Bmim] ILs, as reported earlier [ Chem. Eur. J. 2013 , 19 , 2122 ] led to the formation of MFI or BEA type zeolites. Contrary, [BF4Bmim] and [PF6Bmim] ILs did not succeed in organizing the Si-Al network into a zeolite structure. To try to explain these results, a series of quantum mechanical calculations considering monomers ([XBmim]) and dimers ([XBmim]2) by themselves and plus cosolvent (water or ethanol) were carried out, where X ≡ Cl(-), BF4(-), PF6(-), or CH3SO3(-). Our attention was focused on the similarities and differences among the two types of cosolvents and the relation between the structure and the multiple factors defining the interactions among the ILs and the cosolvent. Although a specific pattern based on local structures explaining the different behavior of these ILs as a zeolite structuring template was not found, the calculated interaction energies involving the Cl(-) and CH3SO3(-) anions were very close and larger than those for BF4(-) and PF6(-) species. These differences in energy can be used as an argument to describe their different behavior as structure directing agents. Moreover, the topology of the cosolvent is also an ingredient to take into account for a proper understanding of the results.

9.
Chemistry ; 19(6): 2122-30, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23255393

RESUMEN

This study reports the use of 1-butyl-3-methyl imidazolium methanesulfonate ionic liquid as a template in the synthesis of zeolites. It is found that the silicon source determines the formation of beta (BEA), mordenite framework inverted (MFI), or analcime (ANA) zeolites. Depending on this source, different preorganized complexes are obtained that drive the formation of the different zeolite structures. In the presence of ethanol, the ionic liquid form preorganized complexes that drive the formation of MFI. In its absence, BEA is obtained. Whereas, the large amount of sodium present when using sodium metasilicate leads to ANA formation. A molecular simulation study of the relative stability of the template-framework system and location of the template provides further insight into the mechanism of synthesis.

10.
Rev. colomb. quím. (Bogotá) ; 35(1): 7-17, jun. 2006. ilus, graf, tab
Artículo en Español | LILACS | ID: lil-636577

RESUMEN

El catalizador de FCC está constituido por partículas de composición compleja donde el componente activo es una zeolita Y. En este trabajo se presentan los resultados texturales y estructurales de una zeolita USY comercial lixiviada, de una serie de catalizadores con 7, 15, 25, 35 y 45% de material activo y los de estos materiales desactivados hidrotérmicamente. Las muestras se caracterizaron por fluorescencia de rayos X (FRX), difracción de rayos X (DRX), resonancia magnética nuclear de silicio (29Si RMN) y fisiadsorción de nitrógeno a 77 K. A partir de estos resultados se hallaron correlaciones entre el volumen de microporo y el contenido de zeolita y entre el grado de cristalinidad y el porcentaje de zeolita. Además, se encontró que un tratamiento con sólo 20% de vapor de agua a 1033 K durante 16 horas destruye los grupos estructurales Si(2Al) y Si(3Al) como reflejo de la dealuminización drástica que sufre el material.


FCC catalyst is made up of particles of complex composition where the main active component is a Y zeolite. This work presents the textural and structural results of a commercial USY zeolite which had been previously prepared from a set of catalysts with 7, 15, 25, 35 y 45% of active material and of the hydrothermally deactivated materials zeolite. The samples have been characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), 29Si NMR spectroscopy and nitrogen adsorption at 77K. From these results was found correlations between micropore volume and zeolite content and degree crystallinity and %zeolite. Also, it was found that an hydrothermal treatment at 1033 K with only 20% steam during 16 hours destroys the structural groups Si(2Al) and Si(3Al) as a reflection of the strongly dealumination of the zeolite component of the catalyst.

11.
Angew Chem Int Ed Engl ; 38(4): 506-509, 1999 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29711772

RESUMEN

A new band at 1640 cm-1 is revealed by diffuse reflectance FT-IR spectroscopy of acetone adsorbed on a MgO surface (shown schematically). On the grounds of ab initio quantum-mechanical calculations, this band is assigned to an adsorbed enolate species. This evidence proves the catalytic role of the metal oxide surface in the condensation reaction mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...