Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLOS Glob Public Health ; 3(4): e0001505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068071

RESUMEN

Progress in malaria control has stalled over the recent years. Knowledge on main drivers of transmission explaining small-scale variation in prevalence can inform targeted control measures. We collected finger-prick blood samples from 3061 individuals irrespective of clinical symptoms in 20 clusters in Busia in western Kenya and screened for Plasmodium falciparum parasites using qPCR and microscopy. Clusters spanned an altitude range of 207 meters (1077-1284 m). We mapped potential mosquito larval habitats and determined their number within 250 m of a household and distances to households using ArcMap. Across all clusters, P. falciparum parasites were detected in 49.8% (1524/3061) of individuals by qPCR and 19.5% (596/3061) by microscopy. Across the clusters, prevalence ranged from 26% to 70% by qPCR. Three to 34 larval habitats per cluster and 0-17 habitats within a 250m radius around households were observed. Using a generalized linear mixed effect model (GLMM), a 5% decrease in the odds of getting infected per each 10m increase in altitude was observed, while the number of larval habitats and their proximity to households were not statistically significant predictors for prevalence. Kitchen located indoors, open eaves, a lower level of education of the household head, older age, and being male were significantly associated with higher prevalence. Pronounced variation in prevalence at small scales was observed and needs to be taken into account for malaria surveillance and control. Potential larval habitat frequency had no direct impact on prevalence.

2.
Elife ; 112022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35762586

RESUMEN

Most rapid diagnostic tests for Plasmodium falciparum malaria target the Histidine-Rich Proteins 2 and 3 (HRP2 and HRP3). Deletions of the hrp2 and hrp3 genes result in false-negative tests and are a threat for malaria control. A novel assay for molecular surveillance of hrp2/hrp3 deletions was developed based on droplet digital PCR (ddPCR). The assay quantifies hrp2, hrp3, and a control gene with very high accuracy. The theoretical limit of detection was 0.33 parasites/µl. The deletion was reliably detected in mixed infections with wild-type and hrp2-deleted parasites at a density of >100 parasites/reaction. For a side-by-side comparison with the conventional nested PCR (nPCR) assay, 248 samples were screened in triplicate by ddPCR and nPCR. No deletions were observed by ddPCR, while by nPCR hrp2 deletion was observed in 8% of samples. The ddPCR assay was applied to screen 830 samples from Kenya, Zanzibar/Tanzania, Ghana, Ethiopia, Brazil, and Ecuador. Pronounced differences in the prevalence of deletions were observed among sites, with more hrp3 than hrp2 deletions. In conclusion, the novel ddPCR assay minimizes the risk of false-negative results (i.e., hrp2 deletion observed when the sample is wild type), increases sensitivity, and greatly reduces the number of reactions that need to be run.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina/métodos , Eliminación de Gen , Humanos , Malaria/genética , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética
3.
PLOS Glob Public Health ; 2(7): e0000828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962426

RESUMEN

Rapid diagnostic tests (RDTs) are a key tool for the diagnosis of malaria infections among clinical and subclinical individuals. Low-density infections, and deletions of the P. falciparum hrp2/3 genes (encoding the HRP2 and HRP3 proteins detected by many RDTs) present challenges for RDT-based diagnosis. The novel Rapigen Biocredit three-band Plasmodium falciparum HRP2/LDH RDT was evaluated among 444 clinical and 468 subclinical individuals in a high transmission setting in Burundi. Results were compared to the AccessBio CareStart HRP2 RDT, and qPCR with a sensitivity of <0.3 parasites/µL blood. Sensitivity compared to qPCR among clinical patients for the Biocredit RDT was 79.9% (250/313, either of HRP2/LDH positive), compared to 73.2% (229/313) for CareStart (P = 0.048). Specificity of the Biocredit was 82.4% compared to 96.2% for CareStart. Among subclinical infections, sensitivity was 72.3% (162/224) compared to 58.5% (131/224) for CareStart (P = 0.003), and reached 88.3% (53/60) in children <15 years. Specificity was 84.4% for the Biocredit and 93.4% for the CareStart RDT. No (0/362) hrp2 and 2/366 hrp3 deletions were observed. In conclusion, the novel RDT showed improved sensitivity for the diagnosis of P. falciparum.

4.
Front Cell Infect Microbiol ; 11: 786317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956934

RESUMEN

Malaria parasites can adjust the proportion of parasites that develop into gametocytes, and thus the probability for human-to-vector transmission, through changes in the gametocyte conversion rate. Understanding the factors that impact the commitment of malaria parasites to transmission is required to design better control interventions. Plasmodium spp. persist across countries with vast differences in transmission intensities, and in sites where transmission is highly seasonal. Mounting evidence shows that Plasmodium spp. adjusts the investment in transmission according to seasonality of vector abundance, and transmission intensity. Various techniques to determine the investment in transmission are available, i.e., short-term culture, where the conversion rate can be measured most directly, genome and transcriptome studies, quantification of mature gametocytes, and mosquito feeding assays. In sites with seasonal transmission, the proportion of gametocytes, their densities and infectivity are higher during the wet season, when vectors are plentiful. When countries with pronounced differences in transmission intensity were compared, the investment in transmission was higher when transmission was low, thus maximizing the parasite's chances to be transmitted to mosquitoes. Increased transmissibility of residual infections after a successful reduction of malaria transmission levels need to be considered when designing intervention measures.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Humanos , Mosquitos Vectores , Plasmodium vivax , Estaciones del Año
5.
BMC Infect Dis ; 21(1): 44, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422001

RESUMEN

BACKGROUND: Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. METHODS: We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. RESULTS: Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P < 0.001). In the dry season, 4.0% of infections carried gametocytes at moderate-to-high densities likely infective (> 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5-15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. CONCLUSIONS: Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures.


Asunto(s)
Portador Sano/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Adolescente , Infecciones Asintomáticas/epidemiología , Portador Sano/epidemiología , Niño , Preescolar , Femenino , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...