Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 544, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932686

RESUMEN

BACKGROUND: Passion fruit (Passiflora edulis [Sims]) is an important economic fruit crop in Kenya, grown for domestic, regional and international markets. However, passion fruit production is constrained by both biotic and abiotic stresses. Passion fruit woodiness disease (PWD) complex is the most injurious viral disease responsible for yield losses of up to 100%. In East Africa, it is caused by potyviruses. The most effective way to manage PWD is by using resistant cultivars. The objectives of this study were to determine the occurrence of passion fruit woodiness disease in selected counties at the Coastal lowlands of Kenya and screen farmer preferred passion fruit genotypes for resistance to PWD. RESULTS: In the present study, it was established that all surveyed farms in Kwale and Kilifi counties displayed passion fruit woodiness virus disease symptoms. The highest disease incidence of 59.16% and 51.43% was observed at Kilifi and Kwale counties, respectively. A significant difference (p < 0.05) in symptom severity was observed within the tested genotypes with purple and banana passion fruits having the highest and lowest AUDPC values, respectively, both under greenhouse and field conditions. ACP ELISA assays using universal potyvirus antiserum (Agdia Inc., Elkhat, IN) confirmed that the observed characteristic symptoms of woodiness disease were as a result of potyvirus infection. CONCLUSIONS: The findings herein indicate that PWD is widespread in both Kilifi and Kwale counties with low to moderate disease incidence and severity. The observed prevalence, incidence and severity levels of PWD in Kwale and Kilifi counties could be aggravated by poor management practices such as non-sterilization of pruning tools, intercropping with target crops and crop rotation with the same target crops. Response of passion fruit genotypes to woodiness viruses was genotype dependent. There is need to sensitize farmers on the cause and spread of PWD and management strategies in order to increase production and enhance the quality of fruits.


Asunto(s)
Passiflora , Passiflora/genética , Frutas , Kenia , Genotipo , Madera
2.
Plant Methods ; 16: 141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088337

RESUMEN

BACKGROUND: Passion fruit (Passiflora edulis Sims) is an important horticultural crop in the tropics and subtropics, where it has great commercial potential due to high demand for fresh edible fruits and processed juice as well as source of raw materials in cosmetic industries. Genetic engineering shows great potential in passion fruit improvement and can compensate for the limitations of conventional breeding. Despite the success achieved in genetic modification of few passion fruit varieties, transgenic passion fruit production is still difficult for farmer-preferred cultivars. Therefore, it is important to establish a simple and fast Agrobacterium-mediated cell transformation of commercial hybrid passion fruit KPF4 (Passiflora edulis f. edulis × Passiflora edulis f. flavicarpa). RESULTS: In the present study, we have developed a simple and fast Agrobacterium-mediated transformation system for hybrid passion fruit KPF4 using leaf disc explants. Factors affecting the rate of transient beta (ß)-glucuronidase (gusA) expression and consequently transformation efficiency were optimized as follows: Agrobacterium cell density with an OD600 of 0.5, 30 min infection time, 3 days of co-cultivation duration and the incorporation of 200 µM acetosyringone into Agrobacterium infection suspension medium. Using the optimized conditions, transgenic plants of KPF4 were produced within 2 months with an average transformation efficiency of 0.67%. The ß-glucuronidase (GUS) histochemical staining confirmed the expression and integration of an intron-containing gusA gene into transformed leaf discs and transgenic plant lines of KPF4. The presence of gusA gene in the transgenic plants was confirmed by polymerase chain reaction (PCR). The results confirmed that the gusA gene was efficiently integrated into the passion fruit genome. CONCLUSIONS: The developed transformation protocol is simple and rapid and could be useful for functional genomic studies and transferring agronomically important traits into passion fruit hybrid KPF4. This study developed a method that can be used to transfer traits such as resistance to viral diseases, low fruit quality and short storage life. To the best of our knowledge, this is the first report on genetic transformation system for commercial passion fruit hybrid KPF4.

3.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396747

RESUMEN

Insect pests pose a serious threat to global food production. Pod borer (Helicoverpa armigera (Hübner)) is one of the most destructive pests of leguminous crops. The use of host resistance has been an effective, environmentally friendly and sustainable approach for controlling several agricultural pests. The exploitation of natural variations in crop wild relatives could yield pest-resistant crop varieties. In this study, we used a high-throughput transcriptome profiling approach to investigate the defense mechanisms of susceptible cultivated and tolerant wild pigeonpea genotypes against H. armigera infestation. The wild genotype displayed elevated pest-induced gene expression, including the enhanced induction of phytohormone and calcium/calmodulin signaling, transcription factors, plant volatiles and secondary metabolite genes compared to the cultivated control. The biosynthetic and regulatory processes associated with flavonoids, terpenes and glucosinolate secondary metabolites showed higher accumulations in the wild genotype, suggesting the existence of distinct tolerance mechanisms. This study provides insights into the molecular mechanisms underlying insect resistance in the wild pigeonpea genotype. This information highlights the indispensable role of crop wild relatives as a source of crucial genetic resources that could be important in devising strategies for crop improvement with enhanced pest resistance.


Asunto(s)
Cajanus/genética , Cajanus/parasitología , Resistencia a la Enfermedad/genética , Mariposas Nocturnas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genotipo , Herbivoria , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Transcriptoma
4.
Physiol Mol Biol Plants ; 25(4): 837-846, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31402813

RESUMEN

Drought is the most perilous abiotic stress that affects finger millet growth and productivity worldwide. For the successful production of finger millet, selection of drought tolerant varieties is necessary and critical stages under drought stress, germination and early seedling growth, ought to be fully understood. This study investigated the physiological and biochemical responses of six finger millet varieties (GBK043137, GBK043128, GBK043124, GBK043122, GBK043094 and GBK043050) under mannitol-induced drought stress. Seeds were germinated in sterile soil and irrigated with various concentrations of mannitol (200, 400 and 600 mM) for 2 weeks. In a comparative analysis relative water content (RWC), chlorophyll, proline and malondialdehyde (MDA) contents were measured to obtain the physiological and biochemical characteristics of drought stress. The results showed that increased levels of drought stress seriously decreased germination and early seedling growth of finger millet varieties. However, root growth was increased. In addition, exposition to drought stress triggered a significant decrease in relative water content and chlorophyll content reduction, and the biochemical parameters assay showed less reduction in RWC. Furthermore, oxidative damage indicating parameters, such as proline concentration and MDA content, increased. Varieties GBK043137 and GBK043094 were less affected by drought than the other varieties as shown by significant changes in their physiological parameters. Our findings reveal the differences between the physiological and biochemical responses of finger millet to drought and are vital for breeding and selecting drought tolerant varieties of finger millet. Further, genomic and molecular investigations need to be undertaken to gain a deeper insight into the detailed mechanisms of drought tolerance in finger millet.

5.
J Biol Res (Thessalon) ; 23: 4, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27030819

RESUMEN

BACKGROUND: Bananas and plantains (Musa spp.) provide 25 % of the food energy requirements for more than 100 million people in Africa. Plant parasitic nematodes cause severe losses to the crop due to lack of control options. The sterile nature of Musa spp. hampers conventional breeding but makes the crop suitable for genetic engineering. A constitutively expressed synthetic peptide in transgenic plantain has provided resistance against nematodes. Previous work with the peptide in potato plants indicates that targeting expression to the root tip improves the efficacy of the defence mechanism. However, a promoter that will provide root tip specific expression of transgenes in a monocot plant, such as plantain, is not currently available. Here, we report the cloning and evaluation of the maize root cap-specific protein-1 (ZmRCP-1) promoter for root tip targeted expression of transgenes that provide a defence against plant parasitic nematodes in transgenic plantain. RESULTS: Our findings indicate that the maize ZmRCP-1 promoter delivers expression of ß-glucuronidase (gusA) gene in roots but not in leaves of transgenic plantains. In mature old roots, expression of gusA gene driven by ZmRCP-1 becomes limited to the root cap. Invasion by the nematode Radopholus similis does not modify Root Cap-specific Protein-1 promoter activity. CONCLUSIONS: Root cap-specific protein-1 promoter from maize can provide targeted expression of transgene for nematode resistance in transgenic plantain.

6.
Front Plant Sci ; 6: 1025, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635849

RESUMEN

Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

7.
PLoS Negl Trop Dis ; 5(4): e1017, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21483717

RESUMEN

BACKGROUND: Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT), expresses two proteins with homology to human glycogen synthase kinase 3ß (HsGSK-3) designated TbruGSK-3 short and TbruGSK-3 long. TbruGSK-3 short has previously been validated as a potential drug target and since this enzyme has also been pursued as a human drug target, a large number of inhibitors are available for screening against the parasite enzyme. A collaborative industrial/academic partnership facilitated by the World Health Organisation Tropical Diseases Research division (WHO TDR) was initiated to stimulate research aimed at identifying new drugs for treating HAT. METHODOLOGY/PRINCIPAL FINDINGS: A subset of over 16,000 inhibitors of HsGSK-3 ß from the Pfizer compound collection was screened against the shorter of two orthologues of TbruGSK-3. The resulting active compounds were tested for selectivity versus HsGSK-3ß and a panel of human kinases, as well as in vitro anti-trypanosomal activity. Structural analysis of the human and trypanosomal enzymes was also performed. CONCLUSIONS/SIGNIFICANCE: We identified potent and selective compounds representing potential attractive starting points for a drug discovery program. Structural analysis of the human and trypanosomal enzymes also revealed hypotheses for further improving selectivity of the compounds.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Asociación entre el Sector Público-Privado , Trypanosoma brucei brucei/enzimología , Antiprotozoarios/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/química , Humanos , Modelos Moleculares , Pruebas de Sensibilidad Parasitaria , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...