Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 30(30): 304001, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30965307

RESUMEN

We report on the structural and optical properties of GaAs0.7P0.3/GaP core-shell nanowires (NWs) for future photovoltaic applications. The NWs are grown by self-catalyzed molecular beam epitaxy. Scanning transmission electron microscopy (STEM) analyses demonstrate that the GaAsP NW core develops an inverse-tapered shape with a formation of an unintentional GaAsP shell having a lower P content. Without surface passivation, this unintentional shell produces no luminescence because of strong surface recombination. However, passivation of the surface with a GaP shell leads to the appearance of a secondary peak in the luminescence spectrum arising from this unintentional shell. The attribution of the luminescence peaks is confirmed by correlated cathodoluminescence and STEM analyses of the same NW.

2.
Nanotechnology ; 30(21): 214005, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-30736031

RESUMEN

Optical properties of GaN nanowires (NWs) grown on chemical vapor deposited-graphene transferred on an amorphous support are reported. The growth temperature was optimized to achieve a high NW density with a perfect selectivity with respect to a SiO2 surface. The growth temperature window was found to be rather narrow (815°C ± 5°C). Steady-state and time-resolved photoluminescence from GaN NWs grown on graphene was compared with the results for GaN NWs grown on conventional substrates within the same molecular beam epitaxy reactor showing a comparable optical quality for different substrates. Growth at temperatures above 820 °C led to a strong NW density reduction accompanied with a diameter narrowing. This morphology change leads to a spectral blueshift of the donor-bound exciton emission line due to either surface stress or dielectric confinement. Graphene multi-layered micro-domains were explored as a way to arrange GaN NWs in a hollow hexagonal pattern. The NWs grown on these domains show a luminescence spectral linewidth as low as 0.28 meV (close to the set-up resolution limit).

3.
Nanotechnology ; 28(49): 495707, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29057754

RESUMEN

We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

4.
Ultramicroscopy ; 176: 93-98, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28196629

RESUMEN

We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

5.
Nanotechnology ; 27(13): 135602, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26895252

RESUMEN

We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates.

6.
Nanotechnology ; 23(21): 215702, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551776

RESUMEN

The introduction of hydrogen chloride during the in situ doping of silicon nanowires (SiNWs) grown using the vapor-liquid-solid (VLS) mechanism was investigated. Compared with non-chlorinated atmospheres, the use of HCl with dopant gases considerably improves the surface morphology of the SiNWs, leading to extremely smooth surfaces and a greatly reduced tapering. Variations in the wire diameter are massively reduced for boron doping, and cannot be measured at 600 °C for phosphorous over several tens of micrometers. This remarkable feature is accompanied by a frozen gold migration from the catalyst, with no noticeable levels of gold clusters observed using scanning electron microscopy. A detailed study of the apparent resistivity of the NWs reveals that the dopant incorporation is effective for both types of doping. A graph linking the apparent resistivity to the dopant to silane dilution ratio is built for both types of doping and discussed in the frame of the previous results.


Asunto(s)
Cristalización/métodos , Ácido Clorhídrico/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Silicio/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
7.
Nanotechnology ; 23(2): 025701, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22166492

RESUMEN

Recent publications have reported the presence of hexagonal phases in Si nanowires. Most of these reports were based on 'odd' diffraction patterns and HRTEM images­'odd' means that these images and diffraction patterns could not be obtained on perfect silicon crystals in the classical diamond cubic structure. We analyze the origin of these 'odd' patterns and images by studying the case of various Si nanowires grown using either Ni or Au as catalysts in combination with P or Al doping. Two models could explain the experimental results: (i) the presence of a hexagonal phase or (ii) the presence of defects that we call 'hidden' defects because they cannot be directly observed in most images. We show that in many cases one direction of observation is not sufficient to distinguish between the two models. Several directions of observations have to be used. Secondly, conventional TEM images, i.e. bright-field two-beam and dark-field images, are of great value in the identification of 'hidden' defects. In addition, slices of nanowires perpendicular to the growth axis can be very useful. In the studied nanowires no hexagonal phase with long range order is found and the 'odd' images and diffraction patterns are mostly due to planar defects causing superposition of different crystal grains. Finally, we show that in Raman experiments the defect-rich NWs can give rise to a Raman peak shifted to 504­511 cm⁻¹ with respect to the Si bulk peak at 520 cm⁻¹, indicating that Raman cannot be used to identify a hexagonal phase.

8.
Sci Total Environ ; 409(24): 5392-402, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21962928

RESUMEN

We used a concentration ratio method to predict yearly and summer averages of stream total nitrogen, nitrate and total phosphorus concentrations at a regional scale. The ratio of the median daily concentration on the flow weighted annual concentration was used. This ratio characterizes the concentration dynamics of a catchment. We took advantage of the commonly used budget type models applied at a regional scale to relate concentrations to loads instead of directly to land uses, as has previously been done. The relationship was modeled with Boosted Regression Trees using catchment and stream characteristics along with loads and flows obtained from the SPARROW budget model. The ratio modeling approach was compared to a direct approach for concentration prediction, and also to a simple method where the mean ratio was used. The modeling performances of the ratio models were overall satisfying (r2 of 49% to 78%), and a better choice than the two other methods tested. This ratio modeling approach is based on a steady state assumption and largely ignores temporal dynamics. As such, this modeling technique does not replace the more physically-based techniques, but allows for hybrid approaches for improved spatial interpolations. This method could be used to predict effectively the impact (at equilibrium) of land use change and management scenarios on water quality at a regional scale.


Asunto(s)
Monitoreo del Ambiente/métodos , Nitratos/análisis , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Ambiente , Modelos Químicos , Modelos Teóricos , Nueva Zelanda , Estaciones del Año , Factores de Tiempo , Movimientos del Agua , Calidad del Agua
9.
Nano Lett ; 10(7): 2335-41, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20521833

RESUMEN

The state of the lateral surface plays a great role in the physics of silicon nanowires. Surprisingly, little is known about the phenomena that occur during growth on the facets of the wires. We demonstrate here that the size and shape of the facets evolve with the exposure time and the radial growth speed. Depending on the chemistry of the surface, either passivated by chlorine or decorated by gold clusters, the radial growth speed varies and the evolution of the facets is enhanced or impeded. If the radial growth speed is high enough, the faceting of the wire can change from top to bottom due to the exposure time difference. Three types of faceting are exposed, dodecagonal, hexagonal, and triangular. An evolution model is introduced to link the different faceting structures and the possible transitions.

10.
Nano Lett ; 10(7): 2323-9, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20503995

RESUMEN

The past decade has seen the explosion of experimental results on nanowires grown by catalyzed mechanisms. However, few are known on their electronic properties especially the influence of surfaces and catalysts. We demonstrate by an optical method how a curious electron-hole thermodynamic phase can help to characterize volume and surface recombination rates of silicon nanowires (SiNWs). By studying the electron-hole liquid dynamics as a function of the spatial confinement, we directly measured these two key parameters. We measured a surface recombination velocity of passivated SiNWs of 20 cm s(-1), 100 times lower than previous values reported. Furthermore, the volume recombination rate of gold-catalyzed SiNWs is found to be similar to that of a high-quality three-dimensional silicon crystal; the influence of the catalyst is negligible. These results advance the knowledge of SiNW surface passivation and provide essential guidance to the development of efficient nanowire-based devices.

11.
Nanotechnology ; 20(47): 475307, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19875870

RESUMEN

Silicon nanowires were grown by chemical vapour deposition on gold catalysts using SiH4 and HCl diluted in H2. The effects of HCl on the wires and the catalysts were investigated for various HCl partial pressures. Keeping all other parameters constant, gold migration on the silicon surface is found to be dramatically reduced by the surface chlorination induced by HCl. We then use HCl to control gold migration and show the existence of a 'diffusion-limited minimum diameter'. This diameter limit arises from the surface migration kinetics and it sets a lower bound on the wire diameter distribution.

12.
Nano Lett ; 9(7): 2575-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19583280

RESUMEN

We study by time-resolved low temperature photoluminescence (PL) experiments of the electronic states of silicon nanowires (SiNWs) grown by gold catalyzed chemical vapor deposition and passivated by thermal SiO(2). The typical recombination line of free carriers in gold-catalyzed SiNWs (Au-SiNWs) is identified and studied by time-resolved experiments. We demonstrate that intrinsic Auger recombination governs the recombination dynamic of the dense e-h plasma generated inside the NW. In a few tens of nanoseconds after the pulsed excitation, the density of the initial electronic system rapidly decreases down to reach that of a stable electron-hole liquid phase. The comparison of the PL intensity decay time of Au-SiNWs with high crystalline quality and purity silicon layer allows us to conclude that the Au-SiNW electronic properties are highly comparable to those of bulk silicon crystal.


Asunto(s)
Electrones , Oro/química , Mediciones Luminiscentes , Nanocables/química , Silicio/química , Catálisis
13.
Nanotechnology ; 20(24): 245602, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19471089

RESUMEN

The effects of trimethylaluminium (TMA) on silicon nanowires grown by chemical vapour deposition (CVD) were investigated in the 650-850 degrees C growth temperature range. Gold was used as the growth catalyst and SiH4 in H2 carrier gas as the Si precursor. Depending on substrate temperature and TMA partial pressure, the structure's morphology evolves from wires to tapered needles, pyramids or nanotrees. The TMA presence was linked to two specific growth modes: an enhanced surface growth which forms Si needles and a branched growth leading to Si nanotrees. We suggest that competition between these two specific growth modes and the usual Au-catalyzed VLS growth is responsible for the observed morphology changes.


Asunto(s)
Aluminio/química , Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Silicio/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...