Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Cell Biol ; 34(1): 16-29, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24144981

RESUMEN

In osteoclasts (OCs) podosomes are organized in a belt, a feature critical for bone resorption. Although microtubules (MTs) promote the formation and stability of the belt, the MT and/or podosome molecules that mediate the interaction of the two systems are not identified. Because the growing "plus" ends of MTs point toward the podosome belt, plus-end tracking proteins (+TIPs) might regulate podosome patterning. Among the +TIPs, EB1 increased as OCs matured and was enriched in the podosome belt, and EB1-positive MTs targeted podosomes. Suppression of MT dynamic instability, displacement of EB1 from MT ends, or EB1 depletion resulted in the loss of the podosome belt. We identified cortactin as an Src-dependent interacting partner of EB1. Cortactin-deficient OCs presented a defective MT targeting to, and patterning of, podosomes and reduced bone resorption. Suppression of MT dynamic instability or EB1 depletion increased cortactin phosphorylation, decreasing its acetylation and affecting its interaction with EB1. Thus, dynamic MTs and podosomes interact to control bone resorption.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Cortactina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Osteoclastos/metabolismo , Familia-src Quinasas/metabolismo , Acetilación , Actinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Cortactina/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Cinética , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Osteoclastos/citología , Fosforilación , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Familia-src Quinasas/genética
2.
J Immunol ; 190(2): 695-702, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23241879

RESUMEN

Recognition of nucleic acids by TLR9 requires its trafficking from the endoplasmic reticulum to endolysosomal compartments and its subsequent proteolytic processing. Both processes depend on interactions of TLR9 with the polytopic endoplasmic reticulum-resident protein UNC93B1. To examine the intracellular behavior of TLR9 in primary APCs, we generated transgenic mice expressing a TLR9-GFP fusion. The TLR9-GFP transgene is functional and is proteolytically processed in resting bone marrow-derived macrophages (BMDMs), dendritic cells, and B cells. Inhibition of cleavage impairs TLR9-dependent responses in all primary APCs analyzed. The kinetics of TLR9-GFP processing in BMDMs and B cells differs: in B cells, proteolysis occurs at a faster rate, consistent with an almost exclusive localization to endolysosomes at the resting state. In contrast to the joint requirement for cathepsins L and S for TLR9 cleavage in macrophages, TLR9-GFP cleavage depends on cathepsin L activity in B cells. As expected, in BMDMs and B cells from UNC93B1 (3d) mutant mice, cleavage of TLR9-GFP is essentially blocked, and the expression level of UNC93B1 appears tightly correlated with TLR9-GFP cleavage. We conclude that proteolysis is a universal requirement for TLR9 activation in the primary cell types tested, however the cathepsin requirement, rate of cleavage, and intracellular behavior of TLR9 varies. The observed differences in trafficking indicate the possibility of distinct modes of endosomal content sampling to facilitate initiation of TLR-driven responses in APCs.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Animales , Linfocitos B/metabolismo , Células de la Médula Ósea/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Transducción de Señal , Transgenes
3.
J Exp Med ; 208(8): 1721-35, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21788407

RESUMEN

Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of ß(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.


Asunto(s)
Actinas/metabolismo , Permeabilidad Capilar/inmunología , Cortactina/deficiencia , Cortactina/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Animales , Western Blotting , Adhesión Celular/fisiología , Cortactina/genética , Cortactina/metabolismo , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Genotipo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Fluorescente , Neutrófilos/metabolismo , Oligonucleótidos/genética , ARN Interferente Pequeño/genética , Venas Umbilicales/citología , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rho
4.
PLoS One ; 6(5): e19931, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603613

RESUMEN

The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Recuperación de Fluorescencia tras Fotoblanqueo , Ratones , Microscopía , Polimerizacion
5.
Mol Biol Cell ; 20(14): 3209-23, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19458196

RESUMEN

Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/efectos de los fármacos , Cortactina/metabolismo , Fibroblastos/citología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Clatrina/metabolismo , Cortactina/deficiencia , Citoesqueleto/efectos de los fármacos , Citoesqueleto/enzimología , Citoesqueleto/ultraestructura , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/ultraestructura , Técnicas de Inactivación de Genes , Marcación de Gen , Humanos , Ratones , Seudópodos/efectos de los fármacos , Seudópodos/enzimología , Seudópodos/ultraestructura , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/enzimología , Fibras de Estrés/ultraestructura , Cicatrización de Heridas/efectos de los fármacos , Proteínas de Unión al GTP rac/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA