Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-36416021

RESUMEN

Nanomaterials have outstanding and unprecedented advantageous material properties but may also cause adverse effects in humans upon exposure. Testing nanomaterials for genotoxic properties is challenging because traditional testing methods were designed for small, soluble molecules and may not be easily applicable without modifications. This review critically examines available genotoxicity tests for use with nanomaterials, including DNA damage tests such as the comet assay, gene mutation tests such as the mouse lymphoma and hprt assay, and chromosome mutation tests such as the micronucleus test and the chromosome aberration test. It presents arguments for the relative usefulness of various tests, such as preferring the micronucleus test over the chromosome aberration test for scoring chromosome mutations and preferring mammalian cell gene mutation tests because the Ames test has limited utility. Finally, it points out the open questions and further needs in adapting genotoxicity tests for nanomaterials, such as validation, reference nanomaterials, and the selection of top test concentrations, as well as the relevance and applicability of test systems and the need to define testing strategies. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.


Asunto(s)
Nanoestructuras , Ratones , Humanos , Animales , Pruebas de Mutagenicidad , Ensayo Cometa , Pruebas de Micronúcleos , Nanoestructuras/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Mamíferos
2.
Semin Cancer Biol ; 80: 39-57, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027979

RESUMEN

The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-ß boswellic acid, α- and ß-boswellic acids, 11-keto-ß-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.


Asunto(s)
Boswellia , Olíbano , Glioma , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Olíbano/farmacología , Olíbano/uso terapéutico , Humanos , Factores Inmunológicos , Resinas de Plantas
3.
Arch Toxicol ; 95(12): 3717-3744, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34595563

RESUMEN

N-vinyl pyrrolidone (NVP) is produced up to several thousand tons per year as starting material for the production of polymers to be used in pharmaceutics, cosmetics and food technology. Upon inhalation NVP was carcinogenic in the rat, liver tumor formation is starting already at the rather low concentration of 5 ppm. Hence, differentiation whether NVP is a genotoxic carcinogen (presumed to generally have no dose threshold for the carcinogenic activity) or a non-genotoxic carcinogen (with a potentially definable threshold) is highly important. In the present study, therefore, the existing genotoxicity investigations on NVP (all showing consistently negative results) were extended and complemented with investigations on possible alternative mechanisms, which also all proved negative. All tests were performed in the same species (rat) using the same route of exposure (inhalation) and the same doses of NVP (5, 10 and 20 ppm) as had been used in the positive carcinogenicity test. Specifically, the tests included an ex vivo Comet assay (so far not available) and an ex vivo micronucleus test (in contrast to the already available micronucleus test in mice here in the same species and by the same route of application as in the bioassay which had shown the carcinogenicity), tests on oxidative stress (non-protein-bound sulfhydryls and glutathione recycling test), mechanisms mediated by hepatic receptors, the activation of which had been shown earlier to lead to carcinogenicity in some instances (Ah receptor, CAR, PXR, PPARα). No indications were obtained for any of the investigated mechanisms to be responsible for or to contribute to the observed carcinogenicity of NVP. The most important of these exclusions is genotoxicity. Thus, NVP can rightfully be regarded and treated as a non-genotoxic carcinogen and threshold approaches to the assessment of this chemical are supported. However, the mechanism underlying the carcinogenicity of NVP in rats remains unclear.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias Hepáticas/inducido químicamente , Pirrolidinonas/toxicidad , Animales , Pruebas de Carcinogenicidad , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Femenino , Neoplasias Hepáticas/patología , Masculino , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
4.
Med Res Rev ; 41(6): 3023-3061, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288018

RESUMEN

The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), ß3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.


Asunto(s)
Artemisininas , Enfermedades Autoinmunes , Inmunosupresores , Artemisininas/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Inmunosupresores/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
5.
Phytomedicine ; 85: 153476, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33593628

RESUMEN

We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19 , Medicamentos Herbarios Chinos/toxicidad , Humanos , Plantas Medicinales/toxicidad
6.
Semin Cancer Biol ; 68: 143-163, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883912

RESUMEN

Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, and inhibition of invasion and metastasis. Numerous underlying signaling processes are affected by plant alkaloids. Furthermore, plant alkaloids suppress carcinogenesis, indicating chemopreventive properties. Some plant alkaloids reveal toxicities such as hepato-, nephro- or genotoxicity, which disqualifies them for repositioning purposes. Others even protect from hepatotoxicity or cardiotoxicity of xenobiotics and established anticancer drugs. The present survey of the published literature clearly demonstrates that plant alkaloids have the potential for repositioning in cancer therapy. Exploitation of the chemical diversity of natural alkaloids may enrich the candidate pool of compounds for cancer chemotherapy and -prevention. Their further preclinical and clinical development should follow the same stringent rules as for any other synthetic drug as well. Prospective randomized, placebo-controlled clinical phase I and II trials should be initiated to unravel the full potential of plant alkaloids for drug repositioning.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Alcaloides/toxicidad , Animales , Humanos , Fitoquímicos/toxicidad , Pruebas de Toxicidad
7.
Arch Toxicol ; 94(8): 2663-2682, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451601

RESUMEN

Xenobiotica-metabolizing enzyme (XME) induction is a relevant biological/biochemical process vital to understanding the toxicological profile of xenobiotics. Early recognition of XME induction potential of compounds under development is therefore important, yet its determination by traditional XME activity measurements is time consuming and cost intensive. A proof-of-principle study was therefore designed due to the advent of faster and less cost-intensive methods for determination of enzyme protein and transcript levels to determine whether two such methods may substitute for traditional measurement of XME activity determinations. The results of the study show that determination of enzyme protein levels by peptide group-specific immunoaffinity enrichment/MS and/or determination of gene expression by NanoString nCounter may serve as substitutes for traditional evaluation methodology and/or as an early predictor of potential changes in liver enzymes. In this study, changes of XME activity by the known standard XME inducers phenobarbital, beta-naphthoflavone and Aroclor 1254 were demonstrated by these two methods. To investigate the applicability of these methods to demonstrate XME-inducing activity of an unknown, TS was also examined and found to be an XME inducer. More specifically, TS was found to be a phenobarbital-type inducer (likely mediated by CAR rather than PXR as nuclear receptor), but not due to Ah receptor-mediated or antioxidant response element-mediated beta-naphthoflavone-type induction. The results for TS were confirmed via enzymatic activity measurements. The results of the present study demonstrate the potential applicability of NanoString nCounter mRNA quantitation and peptide group-specific immunoaffinity enrichment/MS protein quantitation for predicting compounds under development to be inducers of liver XME activity.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Perfilación de la Expresión Génica , Inmunoensayo , Hígado/efectos de los fármacos , Nanotecnología , Transcriptoma , Xenobióticos/metabolismo , Animales , Biotransformación , Inductores de las Enzimas del Citocromo P-450/toxicidad , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/inmunología , Inducción Enzimática , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/enzimología , Masculino , Prueba de Estudio Conceptual , Ratas Wistar , Reproducibilidad de los Resultados , Especificidad por Sustrato , Toxicocinética , Flujo de Trabajo , Xenobióticos/toxicidad
9.
Arch Toxicol ; 91(11): 3477-3505, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29051992

RESUMEN

Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field.


Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología/métodos , Animales , Ecotoxicología/historia , Historia del Siglo XXI , Humanos , Ratones Endogámicos C57BL , Control de Calidad , Medición de Riesgo/métodos , Biología de Sistemas , Toxicocinética , Compuestos de Vinilo/efectos adversos
10.
Arch Toxicol ; 91(3): 1497-1511, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27380014

RESUMEN

Determination of the absorption through the skin is of utmost importance for predictions of benefits and of risks of dermal exposure to xenobiotica. In order to allow for flexibility, the OECD guideline for the determination of skin absorption for different purposes and use conditions (OECD guideline 428 combined with the Technical Guidance Document 28) is inexplicit; hence, different experimental procedures are used which may lead to limited comparability of study results. The here described protocol provides explicit guidance, whereas it does not invalidate other procedures within the frame of the OECD guideline since uncritical versus critical steps are differentiated. Optimizations are presented which finally led to a precisely defined protocol allowing for enhanced comparability of future study results. Some salient properties of this protocol are the storage of the prepared diffusion cell overnight refrigerated in the presence of a protease inhibitor cocktail and include investigation of the integrity of the skin sample as well as the removal of the upper stratum corneum by tape strips under standardized conditions.


Asunto(s)
Absorción Cutánea/efectos de los fármacos , Pruebas Cutáneas/métodos , Piel/efectos de los fármacos , Xenobióticos/farmacocinética , Guías como Asunto , Humanos , Pruebas Cutáneas/normas
11.
Drug Metab Rev ; 46(3): 291-324, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24666398

RESUMEN

In general, xenobiotic metabolizing enzymes (XMEs) are expressed in lower levels in the extrahepatic tissues than in the liver, making the former less relevant for the clearance of xenobiotics. Local metabolism, however, may lead to tissue-specific adverse responses, e.g. organ toxicities, allergies or cancer. This review summarizes the knowledge on the expression of phase I and phase II XMEs and transporters in extrahepatic tissues at the body's internal-external interfaces. In the lung, CYPs of families 1, 2, 3 and 4 and epoxide hydrolases are important phase I enzymes, while conjugation is less relevant. In skin, phase I-related enzymatic reactions are considered less relevant. Predominant skin XMEs are phase II enzymes, whereby glucuronosyltransferases (UGT) 1, glutathione-S-transferase (GST) and N-acetyltransferase (NAT) 1 are important for detoxification. The intestinal epithelium expresses many transporters and phase I XME with high levels of CYP3A4 and CYP3A5 and phase II metabolism is mainly related to UGT, NAT and Sulfotransferases (SULT). In the kidney, conjugation reactions and transporters play a major role for excretion processes. In the bladder, CYPs are relevant and among the phase II enzymes, NAT1 is involved in the activation of bladder carcinogens. Expression of XMEs is regulated by several mechanisms (nuclear receptors, epigenetic mechanisms, microRNAs). However, the understanding why XMEs are differently expressed in the various tissues is fragmentary. In contrast to the liver - where for most XMEs lower expression is demonstrated in early life - the XME ontogeny in the extrahepatic tissues remains to be investigated.


Asunto(s)
Transporte Biológico/fisiología , Xenobióticos/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo
12.
Arch Toxicol ; 86(7): 1021-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22576463

RESUMEN

Nanomaterials (NM) offer great technological advantages but their risks to human health are still under discussion. For toxicological testing and evaluation, information on the toxicokinetics of NM is essential as it is different from that of most other xenobiotics. This review provides an overview on the toxicokinetics of NM available to date. The toxicokinetics of NM depends on particle size and shape, protein binding, agglomeration, hydrophobicity, surface charge and protein binding. In most studies with topical skin application, unintentional permeation and systemic availability were not observed; permeation for some NM with distinct properties was observed in animals. Upon inhalation, low levels of primary model nanoparticles became systemically available, but many real-world engineered NM aggregate in aerosols, do not disintegrate in the lung, and do not become systemically available. NM are prone to lymphatic transport, and many NM are taken up by the mononuclear phagocyte system (MPS) acting as a depot. Their half-life in blood depends on their uptake by MPS rather than their elimination from the body. NM reaching the GI tract are excreted with the feces, but of some NM low levels are absorbed and become systemically available. Some quantum dots were not observably excreted in urine nor in feces. Some model quantum dots, however, were efficiently excreted by the kidneys below, but not above 5-6 nm hydrodynamic diameter, while nanotubes 20-30 nm thick and 500-2,000 nm long were abundant in urine. NM are typically not metabolized. Some NM cross the blood-brain barrier favored by a negative surface charge.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanoestructuras , Farmacocinética , Xenobióticos/farmacocinética , Animales , Sistemas de Liberación de Medicamentos/efectos adversos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Humanos , Masculino , Nanoestructuras/efectos adversos , Nanoestructuras/química , Nanoestructuras/toxicidad , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Embarazo , Xenobióticos/efectos adversos , Xenobióticos/química , Xenobióticos/toxicidad
13.
Cell Commun Signal ; 10: 6, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22404972

RESUMEN

p38 MAP kinase is known to be activated by cellular stress finally leading to cell cycle arrest or apoptosis. Furthermore, a tumour suppressor role of p38 MAPK has been proposed. In contrast, a requirement of p38 for proliferation has also been described. To clarify this paradox, we investigated stress- and mitogen-induced p38 signalling in the same cell type using fibroblasts. We demonstrate that - in the same cell line - p38 is activated by mitogens or cellular stress, but p38-dependent signalling is different. Exposure to cellular stress, such as anisomycin, leads to a strong and persistent p38 activation independent of GTPases. As a result, MK2 and downstream the transcription factor CREB are phosphorylated. In contrast, mitogenic stimulation results in a weaker and transient p38 activation, which upstream involves small GTPases and is required for cyclin D1 induction. Consequently, the retinoblastoma protein is phosphorylated and allows G1/S transition. Our data suggest a dual role of p38 and indicate that the level and/or duration of p38 activation determines the cellular response, i.e either proliferation or cell cycle arrest.

14.
Arch Toxicol ; 86(7): 985-94, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22456836

RESUMEN

This review is based on the lecture presented at the April 2010 nanomaterials safety assessment Postsatellite to the 2009 EUROTOX Meeting and summarizes genotoxicity investigations on nanomaterials published in the open scientific literature (up to 2008). Special attention is paid to the relationship between particle size and positive versus negative outcome, as well as the dependence of the outcome on the test used. Salient conclusions and outstanding recommendations emerging from the information summarized in this review are as follows: recognize that nanomaterials are not all the same; therefore know and document what nanomaterial has been tested and in what form; take nanomaterials specific properties into account; in order to make your results comparable with those of others and on other nanomaterials: use or at least include in your studies standardized methods; use in vivo studies to put in vitro results into perspective; take uptake and distribution of the nanomaterial into account; and in order to become able to make extrapolations to risk for human: learn about the mechanism of nanomaterials genotoxic effects. Past experience with standard non-nanosubstances already had shown that mechanisms of genotoxic effects can be complex and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus, a practical and pragmatic approach to genotoxicity investigations of novel nanomaterials is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands, however, adaptations, and the interpretation of results from the genotoxicity testing of nanomaterials needs additional considerations exceeding those used for standard size materials.


Asunto(s)
Mutágenos/toxicidad , Nanoestructuras/toxicidad , Animales , Humanos , Ensayo de Materiales , Pruebas de Mutagenicidad/tendencias , Mutágenos/química , Nanoestructuras/química , Tamaño de la Partícula
15.
Chem Res Toxicol ; 24(12): 2258-68, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22087540

RESUMEN

The synthesis of the 8 possible stereoisomeric diol epoxides (DEs) at the terminal benzo ring of carcinogenic dibenz[a,h]anthracene (DBA) is reported. trans-3,4-Dihydroxy-3,4-dihydro-DBA (1) afforded the 4 bay region DEs: the enantiomeric pairs of the anti diastereomers (+)-3/(-)-3 and of the syn diastereomers (-)-4/(+)-4, respectively. trans-1,2-Dihydroxy-1,2-dihydro-DBA (2) served as precursor of the 4 reverse DEs: the enantiomeric pairs of the anti diastereomers (+)-5/(-)-5 and of the syn diastereomers (-)-6/(+)-6, respectively. The transformation of the olefinic double bond in the enantiomeric trans-dihydrodiols to epoxides was achieved by either (i) oxidation with m-chloroperoxybenzoic acid or (ii) formation of a bromohydrin with N-bromoacetamide/H(2)O followed by dehydrobromination with an anion exchange resin. Because of the pseudodiequatorial conformation of the hydroxyl groups in 1, both reactions proceeded highly stereoselectively, while the stereoselectivity was impaired by the pseudodiaxial conformation of the hydroxyl groups in 2. Diastereomers and racemic compounds were efficiently separated without derivatization by HPLC on achiral or chiral stationary phases, respectively. The absolute configurations of the DEs were deduced from the absolute configuration of 1 and 2 considering the regio- and stereoselectivity of the subsequent reactions and resulted in (+)-(1R,2S,3S,4R)-3/(-)-(1S,2R,3R,4S)-3, (-)-(1S,2R,3S,4R)-4/(+)-(1R,2S,3R,4S)-4, (+)-(1R,2S,3S,4R)-5/(-)-(1S,2R,3R,4S)-5, and (-)-(1R,2S,3R,4S)-6/(+)-(1S,2R,3S,4R)-6. The bacterial mutagenicity of the 8 stereoisomeric DEs was determined in histidine-dependent strains TA98 and TA100 of Salmonella typhimurium in the absence of a metabolizing system. In general, the bay region DEs of DBA were stronger mutagens than the reverse DEs. In strain TA98, the syn diastereomers of bay region DEs were stronger mutagens than their anti isomers, while in the case of reverse DEs the anti diastereomers were more potent than their syn isomers. In strain TA100, all syn diastereomers surpassed the bacterial mutagenicity of their anti isomers. Concerning the bay region DEs of DBA, this corresponds to the situation described for benzo[a]pyrene: of the 4 enantiomeric bay region DEs of DBA and benzo[a]pyrene, the syn diastereomer with [(R,S)-diol (R,S)-epoxide] absolute configuration is the most potent mutagen in both bacterial strains, while the anti isomer with [(S,R)-diol (R,S)-epoxide] configuration is the weakest mutagen.


Asunto(s)
Benzo(a)Antracenos/química , Carcinógenos/síntesis química , Compuestos Epoxi/química , Compuestos Epoxi/toxicidad , Salmonella typhimurium/efectos de los fármacos , Benzo(a)Antracenos/síntesis química , Benzo(a)Antracenos/toxicidad , Carcinógenos/química , Carcinógenos/toxicidad , Conformación Molecular , Pruebas de Mutagenicidad , Oxidación-Reducción , Estereoisomerismo
16.
Nanotoxicology ; 4: 364-81, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20925445

RESUMEN

Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.


Asunto(s)
Nanoestructuras/toxicidad , Protectores Solares/toxicidad , Titanio/toxicidad , Óxido de Zinc/toxicidad , Administración por Inhalación , Animales , Peso Corporal/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Línea Celular , Cosméticos/química , Cosméticos/toxicidad , Cricetinae , Interpretación Estadística de Datos , Macrófagos Alveolares/efectos de los fármacos , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Ratas , Ratas Wistar , Salmonella , Protectores Solares/administración & dosificación , Protectores Solares/química , Titanio/administración & dosificación , Titanio/química , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química
18.
Mutat Res ; 680(1-2): 83-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19836463

RESUMEN

Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.


Asunto(s)
Carcinógenos/toxicidad , Ritmo Circadiano/efectos de los fármacos , Neoplasias/etiología , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/fisiología , Ritmo Circadiano/fisiología , ADN/efectos de los fármacos , Daño del ADN , Reparación del ADN , Homeostasis/fisiología , Humanos , Neoplasias/fisiopatología , Proteínas Circadianas Period/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...