Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(2)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672207

RESUMEN

Reactive oxygen species (ROS), which excessively arise in diabetes and systemic inflammatory diseases, modify cellular lipids and cellular lipid composition leading to altered biophysical properties of cellular membranes. The impact of lipid peroxidation on transmembrane signaling routes is not yet well studied. The canonical transient receptor potential channel 6 (TRPC6) is implicated in the pathogenesis of several forms of glomerular diseases. TRPC6 is sensitive to membrane stretch and relies on a distinct lipid environment. This study investigates the effect of oxidative alterations to plasma membrane lipids on TRPC6 activity and the function of the glomerular filter. Knockout of the anti-oxidative, lipid modifying enzyme paraoxonase 2 (PON2) leads to altered biophysical properties of glomerular epithelial cells, which are called podocytes. Cortical stiffness, quantified by atomic force microscopy, was largely increased in PON2-deficient cultured podocytes. PON2 deficiency markedly enhanced TRPC6 channel currents and channel recovery. Treatment with the amphiphilic substance capsazepine in micromolar doses reduced cortical stiffness and abrogated TRPC6 conductance. In in vivo studies, capsazepine reduced the glomerular phenotype in the model of adriamycin-induced nephropathy in PON2 knockout mice and wildtype littermates. In diabetic AKITA mice, the progression of albuminuria and diabetic kidney disease was delayed. In summary, we provide evidence that the modification of membrane characteristics affects TRPC6 signaling. These results could spur future research to investigate modification of the direct lipid environment of TRPC6 as a future therapeutic strategy in glomerular disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Canal Catiónico TRPC6 , Canales Catiónicos TRPC/metabolismo , Doxorrubicina/efectos adversos , Ratones Noqueados , Capsaicina
2.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429053

RESUMEN

Diabetes and inflammatory diseases are associated with an altered cellular lipid composition due to lipid peroxidation. The pathogenic potential of these lipid alterations in glomerular kidney diseases remains largely obscure as suitable cell culture and animal models are lacking. In glomerular disease, a loss of terminally differentiated glomerular epithelial cells called podocytes refers to irreversible damage. Podocytes are characterized by a complex ramified cellular architecture and highly active transmembrane signaling. Alterations in lipid composition in states of disease have been described in podocytes but the pathophysiologic mechanisms mediating podocyte damage are unclear. In this study, we employ a genetic deletion of the anti-oxidative, lipid-modifying paraoxonase 2 enzyme (PON2) as a model to study altered cellular lipid composition and its effects on cellular signaling in glomerular disease. PON2 deficiency reproduces features of an altered lipid composition of glomerular disease, characterized by an increase in ceramides and cholesterol. PON2 knockout mice are more susceptible to glomerular damage in models of aggravated oxidative stress such as adriamycin-induced nephropathy. Voltage clamp experiments in cultured podocytes reveal a largely increased TRPC6 conductance after a membrane stretch in PON2 deficiency. Correspondingly, a concomitant knockout of TRPC6 and PON2 partially rescues the aggravated glomerular phenotype of a PON2 knockout in the adriamycin model. This study establishes PON2 deficiency as a model to investigate the pathophysiologic mechanisms of podocyte dysfunction related to alterations in the lipid composition, as seen in diabetic and inflammatory glomerular disease. Expanding the knowledge on these routes and options of intervention could lead to novel treatment strategies for glomerular disease.


Asunto(s)
Diabetes Mellitus , Enfermedades Renales , Ratones , Animales , Canal Catiónico TRPC6 , Arildialquilfosfatasa/genética , Ratones Noqueados , Doxorrubicina , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...