Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Res ; 84(6): 808-826, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345497

RESUMEN

Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE: Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.


Asunto(s)
Heterocromatina , Neoplasias , Animales , Heterocromatina/genética , Dedos de Zinc/genética , Elementos Transponibles de ADN , Primates/genética , Inflamación/genética , Neoplasias/genética
2.
Genome Res ; 33(8): 1409-1423, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37730438

RESUMEN

Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) are one of the largest groups of transcription factors encoded by tetrapods, with 378 members in human alone. KZFP genes are often grouped in clusters reflecting amplification by gene and segment duplication since the gene family first emerged more than 400 million years ago. Previous work has revealed that many KZFPs recognize transposable element (TE)-embedded sequences as genomic targets, and that KZFPs facilitate the co-option of the regulatory potential of TEs for the benefit of the host. Here, we present a comprehensive survey of the genetic features and genomic targets of human KZFPs, notably completing past analyses by adding data on close to a hundred family members. General principles emerge from our study of the TE-KZFP regulatory system, which point to multipronged evolutionary mechanisms underlaid by highly complex and combinatorial modes of action with strong influences on human speciation.


Asunto(s)
Factores de Transcripción , Dedos de Zinc , Humanos , Dedos de Zinc/genética , Factores de Transcripción/genética , Evolución Biológica , Elementos Transponibles de ADN/genética , Genómica
3.
Nat Commun ; 13(1): 7178, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418324

RESUMEN

The human genome contains more than 4.5 million inserts derived from transposable elements (TEs), the result of recurrent waves of invasion and internal propagation throughout evolution. For new TE copies to be inherited, they must become integrated in the genome of the germline or pre-implantation embryo, which requires that their source TE be expressed at these stages. Accordingly, many TEs harbor DNA binding sites for the pluripotency factors OCT4, NANOG, SOX2, and KLFs and are transiently expressed during embryonic genome activation. Here, we describe how many primate-restricted TEs have additional binding sites for lineage-specific transcription factors driving their expression during human gastrulation and later steps of fetal development. These TE integrants serve as lineage-specific enhancers fostering the transcription, amongst other targets, of KRAB-zinc finger proteins (KZFPs) of comparable evolutionary age, which in turn corral the activity of TE-embedded regulatory sequences in a similarly lineage-restricted fashion. Thus, TEs and their KZFP controllers play broad roles in shaping transcriptional networks during early human development.


Asunto(s)
Elementos Transponibles de ADN , Redes Reguladoras de Genes , Animales , Humanos , Elementos Transponibles de ADN/genética , Primates/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma Humano
4.
Nat Commun ; 13(1): 4913, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987910

RESUMEN

The treatment of colorectal cancer (CRC) is an unmet medical need in absence of early diagnosis. Here, upon characterizing cancer-specific transposable element-driven transpochimeric gene transcripts (TcGTs) produced by this tumor in the SYSCOL cohort, we find that expression of the hominid-restricted retrogene POU5F1B through aberrant activation of a primate-specific endogenous retroviral promoter is a strong negative prognostic biomarker. Correlating this observation, we demonstrate that POU5F1B fosters the proliferation and metastatic potential of CRC cells. We further determine that POU5F1B, in spite of its phylogenetic relationship with the POU5F1/OCT4 transcription factor, is a membrane-enriched protein that associates with protein kinases and known targets or interactors as well as with cytoskeleton-related molecules, and induces intracellular signaling events and the release of trans-acting factors involved in cell growth and cell adhesion. As POU5F1B is an apparently non-essential gene only lowly expressed in normal tissues, and as POU5F1B-containing TcGTs are detected in other tumors besides CRC, our data provide interesting leads for the development of cancer therapies.


Asunto(s)
Neoplasias Colorrectales , Genes Homeobox , Proteínas de Homeodominio , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Filogenia
5.
Development ; 147(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31806660

RESUMEN

Some of the earliest transcripts produced in fertilized human and mouse oocytes code for DUX, a double homeodomain protein that promotes embryonic genome activation (EGA). Deleting Dux by genome editing at the one- to two-cell stage in the mouse impairs EGA and blastocyst maturation. Here, we demonstrate that mice carrying homozygous Dux deletions display markedly reduced expression of DUX target genes and defects in both pre- and post-implantation development, with, notably, a disruption of the pace of the first few cell divisions and significant rates of late embryonic mortality. However, some Dux-/- embryos give rise to viable pups, indicating that DUX is important but not strictly essential for embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Cigoto/metabolismo , Animales , Cruzamientos Genéticos , Regulación hacia Abajo/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Genotipo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Transgénicos , Células Madre Embrionarias de Ratones/metabolismo
6.
Cell Stem Cell ; 24(5): 724-735.e5, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006620

RESUMEN

Expansion of transposable elements (TEs) coincides with evolutionary shifts in gene expression. TEs frequently harbor binding sites for transcriptional regulators, thus enabling coordinated genome-wide activation of species- and context-specific gene expression programs, but such regulation must be balanced against their genotoxic potential. Here, we show that Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) control the timely and pleiotropic activation of TE-derived transcriptional cis regulators during early embryogenesis. Evolutionarily recent SVA, HERVK, and HERVH TE subgroups contribute significantly to chromatin opening during human embryonic genome activation and are KLF-stimulated enhancers in naive human embryonic stem cells (hESCs). KZFPs of corresponding evolutionary ages are simultaneously induced and repress the transcriptional activity of these TEs. Finally, the same KZFP-controlled TE-based enhancers later serve as developmental and tissue-specific enhancers. Thus, by controlling the transcriptional impact of TEs during embryogenesis, KZFPs facilitate their genome-wide incorporation into transcriptional networks, thereby contributing to human genome regulation.


Asunto(s)
Cromatina/microbiología , Elementos Transponibles de ADN/genética , Células Madre Embrionarias/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Animales , Evolución Biológica , Cromatina/genética , Evolución Molecular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Especiación Genética , Hominidae , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Filogenia , Alineación de Secuencia , Especificidad de la Especie
7.
Genes Dev ; 33(1-2): 49-54, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602440

RESUMEN

Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation, causing parental origin-specific monoallelic gene expression. Zinc finger protein 57 (ZFP57) is critical for maintenance of this epigenetic memory during post-fertilization reprogramming, yet incomplete penetrance of ZFP57 mutations in humans and mice suggests additional effectors. We reveal that ZNF445/ZFP445, which we trace to the origins of imprinting, binds imprinting control regions (ICRs) in mice and humans. In mice, ZFP445 and ZFP57 act together, maintaining all but one ICR in vivo, whereas earlier embryonic expression of ZNF445 and its intolerance to loss-of-function mutations indicate greater importance in the maintenance of human imprints.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Secuencia Conservada , Células Madre Embrionarias , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Represoras , Factores de Transcripción/genética
8.
Nucleic Acids Res ; 46(17): 8788-8802, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955894

RESUMEN

During cell division, maintenance of chromatin features from the parental genome requires their proper establishment on its newly synthetized copy. The loss of epigenetic marks within heterochromatin, typically enriched in repetitive elements, endangers genome stability and permits chromosomal rearrangements via recombination. However, how histone modifications associated with heterochromatin are maintained across mitosis remains poorly understood. KAP1 is known to act as a scaffold for a repressor complex that mediates local heterochromatin formation, and was previously demonstrated to play an important role during DNA repair. Accordingly, we investigated a putative role for this protein in the replication of heterochromatic regions. We first found that KAP1 associates with several DNA replication factors including PCNA, MCM3 and MCM6. We then observed that these interactions are promoted by KAP1 phosphorylation on serine 473 during S phase. Finally, we could demonstrate that KAP1 forms a complex with PCNA and the histone-lysine methyltransferase Suv39h1 to reinstate heterochromatin after DNA replication.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/fisiología , Heterocromatina/metabolismo , Proteína 28 que Contiene Motivos Tripartito/fisiología , Animales , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Células K562 , Metiltransferasas/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo
9.
Epigenetics Chromatin ; 11(1): 7, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29482634

RESUMEN

BACKGROUND: The KZFP/KAP1 (KRAB zinc finger proteins/KRAB-associated protein 1) system plays a central role in repressing transposable elements (TEs) and maintaining parent-of-origin DNA methylation at imprinting control regions (ICRs) during the wave of genome-wide reprogramming that precedes implantation. In naïve murine embryonic stem cells (mESCs), the genome is maintained highly hypomethylated by a combination of TET-mediated active demethylation and lack of de novo methylation, yet KAP1 is tethered by sequence-specific KZFPs to ICRs and TEs where it recruits histone and DNA methyltransferases to impose heterochromatin formation and DNA methylation. RESULTS: Here, upon removing either KAP1 or the cognate KZFP, we observed rapid TET2-dependent accumulation of 5hmC at both ICRs and TEs. In the absence of the KZFP/KAP1 complex, ICRs lost heterochromatic histone marks and underwent both active and passive DNA demethylation. For KAP1-bound TEs, 5mC hydroxylation correlated with transcriptional reactivation. Using RNA-seq, we further compared the expression profiles of TEs upon Kap1 removal in wild-type, Dnmt and Tet triple knockout mESCs. While we found that KAP1 represents the main effector of TEs repression in all three settings, we could additionally identify specific groups of TEs further controlled by DNA methylation. Furthermore, we observed that in the absence of TET proteins, activation upon Kap1 depletion was blunted for some TE integrants and increased for others. CONCLUSIONS: Our results indicate that the KZFP/KAP1 complex maintains heterochromatin and DNA methylation at ICRs and TEs in naïve embryonic stem cells partly by protecting these loci from TET-mediated demethylation. Our study further unveils an unsuspected level of complexity in the transcriptional control of the endovirome by demonstrating often integrant-specific differential influences of histone-based heterochromatin modifications, DNA methylation and 5mC oxidation in regulating TEs expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/citología , Retroelementos , Proteína 28 que Contiene Motivos Tripartito/genética , Animales , Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Eliminación de Gen , Técnicas de Inactivación de Genes , Impresión Genómica , Histonas/metabolismo , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Análisis de Secuencia de ARN , Activación Transcripcional , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Dedos de Zinc
10.
Hepatology ; 66(1): 235-251, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370258

RESUMEN

Hepatocellular carcinoma (HCC) represents the fifth-most common form of cancer worldwide and carries a high mortality rate attributed to lack of effective treatment. Males are 8 times more likely to develop HCC than females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28 (tripartite protein 28), a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver. Trim28hep-/- mice display sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and aging precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances, and altered responses to gut microbiota in the pathogenesis of Trim28hep-/- -associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. CONCLUSION: This work underpins how discrete polyphenic traits in epigenetically metastable conditions can contribute to a cancer-prone state and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota, and cancer. (Hepatology 2017;66:235-251).


Asunto(s)
Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Inestabilidad Genómica , Neoplasias Hepáticas/genética , Proteínas Represoras/genética , Envejecimiento/genética , Animales , Carcinoma Hepatocelular/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Epigenómica/métodos , Femenino , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Fenotipo , Distribución Aleatoria , Medición de Riesgo , Factores de Riesgo , Proteína 28 que Contiene Motivos Tripartito
11.
Dev Cell ; 36(6): 611-23, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27003935

RESUMEN

KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), repress these elements in embryonic stem cells, and regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that likely regulate not only development but also many physiological events. Given the high degree of species specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/deficiencia , Proteína 28 que Contiene Motivos Tripartito
13.
Science ; 340(6130): 350-3, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23493425

RESUMEN

During hematopoiesis, lineage- and stage-specific transcription factors work in concert with chromatin modifiers to direct the differentiation of all blood cells. We explored the role of KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor KAP1 in this process. In mice, hematopoietic-restricted deletion of Kap1 resulted in severe hypoproliferative anemia. Kap1-deleted erythroblasts failed to induce mitophagy-associated genes and retained mitochondria. This was due to persistent expression of microRNAs (miRNAs) targeting mitophagy transcripts, itself secondary to a lack of repression by stage-specific KRAB-ZFPs. The KRAB/KAP1-miRNA regulatory cascade is evolutionarily conserved, as it also controls mitophagy during human erythropoiesis. Thus, a multilayered transcription regulatory system is present, in which protein- and RNA-based repressors are superimposed in combinatorial fashion to govern the timely triggering of an important differentiation event.


Asunto(s)
Autofagia/genética , Eritroblastos/metabolismo , Eritropoyesis/genética , MicroARNs/metabolismo , Mitocondrias/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Anemia/genética , Animales , Eritroblastos/ultraestructura , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito
14.
Development ; 140(3): 519-29, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293284

RESUMEN

Endogenous retroviruses (ERVs) undergo de novo DNA methylation during the first few days of mammalian embryogenesis, although the factors that control the targeting of this process are largely unknown. We asked whether KAP1 (KRAB-associated protein 1) is involved in this mechanism because of its previously defined role in maintaining the silencing of ERVs through the histone methyltransferase ESET and histone H3 lysine 9 trimethylation. Here, we demonstrate that introduced ERV sequences are sufficient to direct rapid de novo methylation of a flanked promoter in embryonic stem (ES) cells. This mechanism requires the presence of an ERV sequence-recognizing KRAB zinc-finger protein (ZFP) and both KAP1 and ESET. Furthermore, this process can also take place on a strong cellular promoter and leads to methylation signatures that are subsequently maintained in vivo throughout embryogenesis. Finally, we show that methylation of ERVs residing in the genome is affected by knockout of KAP1 in early embryos. KRAB-ZFPs, KAP1 and ESET are thus likely to be responsible for the early embryonic instatement of stable epigenetic marks at ERV-containing loci.


Asunto(s)
Metilación de ADN , ADN Viral/metabolismo , Retrovirus Endógenos/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Modificados Genéticamente , ADN Viral/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/virología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/virología , Retrovirus Endógenos/enzimología , Retrovirus Endógenos/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Silenciador del Gen , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Transcriptoma , Transfección , Proteína 28 que Contiene Motivos Tripartito
15.
Cell Rep ; 2(4): 766-73, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23041315

RESUMEN

De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development, yet factors responsible for its instatement at particular genomic loci are poorly defined. Here, we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation, and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast, in differentiated cells, KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly, the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs, not in hepatocytes. Therefore, KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development.


Asunto(s)
Proteínas Portadoras/metabolismo , Metilación de ADN , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT , Línea Celular , Cromatina/metabolismo , Islas de CpG , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Ratones , Proteína 28 que Contiene Motivos Tripartito , Ubiquitina-Proteína Ligasas
16.
FASEB J ; 26(11): 4561-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22872677

RESUMEN

Chromatin remodeling at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by Kruppel-associated box (KRAB)-associated protein 1 (KAP1), the universal cofactor of KRAB-zinc finger proteins (ZFPs), a tetrapod-restricted family of transcriptional repressors. T-cell-specific Kap1-deleted mice displayed a significant expansion of immature thymocytes, imbalances in CD4(+)/CD8(+) cell ratios, and altered responses to TCR and TGFß stimulation when compared to littermate KAP1 control mice. Transcriptome and chromatin studies revealed that KAP1 binds T-cell-specific cis-acting regulatory elements marked by the H3K9me3 repressive mark and enriched in Ikaros/NuRD complexes. Also, KAP1 directly controls the expression of several genes involved in TCR and cytokine signaling. Among these, regulation of FoxO1 seems to play a major role in this system. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB-ZFPs are selectively expressed in T-lymphoid cells. These results reveal the so far unsuspected yet important role of KAP1-mediated epigenetic regulation in T-lymphocyte differentiation and activation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T/fisiología , Animales , Sitios de Unión , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/fisiología , ADN/genética , ADN/metabolismo , Epigénesis Genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Filogenia , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas Represoras/genética , Linfocitos T/citología , Transcriptoma , Proteína 28 que Contiene Motivos Tripartito
17.
Hepatology ; 56(4): 1279-90, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22684873

RESUMEN

UNLABELLED: The liver is characterized by sexually dimorphic gene expression translating into sex-specific differences in lipid, drug, steroid hormone, and xenobiotic metabolism, with distinct responses of males and females to environmental challenges. Here, we investigated the role of the Krüppel-associated box (KRAB)-associated protein 1 (KAP1) epigenetic regulator in this process. Liver-specific KAP1 knockout (KO) led to strikingly sexually dimorphic phenotypic disturbances, including male-predominant steatosis and hepatic tumors with up-regulation of protein kinase B and extracellular signal-related kinases 1/2 mitogen-activated protein kinase signaling. This correlated with the sex-specific transcriptional dysregulation of a wide range of metabolic genes, notably those involved in retinol and sex hormone processing as well as in detoxification. Furthermore, chromatin immunoprecipitation followed by deep sequencing indicated that a number of dysregulated genes are direct targets of the KRAB/KAP1 repression system. Those genes include sexually dimorphic cytochrome P 450 Cyp2d9, glutathione S-transferase π, Cyp2a, Cyp2b, and Cyp3a gene clusters. Additionally, we identified a male-restricted KAP1-binding site in the fat-specific protein 27 gene, correlating with its male-predominant up-regulation upon Kap1 deletion, suggesting that the latter might be an important trigger in the development of male-specific hepatosteatosis and secondary tumorigenesis. CONCLUSION: This work reveals KRAB/KAP1-mediated transcriptional regulation as a central event in metabolic control hormones, drugs, and xenobiotics in the liver and further links disturbances in these processes with hepatic carcinogenesis.


Asunto(s)
Adenoma/genética , Transformación Celular Neoplásica/genética , Hígado Graso/genética , Predisposición Genética a la Enfermedad , Neoplasias Hepáticas/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Adenoma/patología , Animales , Biopsia con Aguja , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Sensibilidad y Especificidad , Factores Sexuales , Proteína 28 que Contiene Motivos Tripartito , Dedos de Zinc/genética
18.
J Biol Chem ; 287(30): 25361-9, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22605343

RESUMEN

The study of chromatin and its regulators is key to understanding and manipulating transcription. We previously exploited the Krüppel-associated box (KRAB) transcriptional repressor domain, present in hundreds of vertebrate-specific zinc finger proteins, to assess the effect of its binding to gene bodies. These experiments revealed that the ectopic and doxycycline (dox)-controlled tet repressor KRAB fusion protein (tTRKRAB) can induce reversible and long-range silencing of cellular promoters. Here, we extend this system to in vivo applications and use tTRKRAB to achieve externally controllable repression of an endogenous mouse locus. We employed lentiviral-mediated transgenesis with promoterless TetO-containing gene traps to engineer a mouse line where the endogenous kinesin family member 2A (Kif2A) promoter drives a YFP reporter gene. When these mice were crossed to animals expressing the TetO-binding tTRKRAB repressor, this regulator was recruited to the Kif2A locus, and YFP expression was reduced. This effect was reversed when dox was given to embryos or adult mice, demonstrating that the cellular Kif2A promoter was only silenced upon repressor binding. Molecular analyses confirmed that tTRKRAB induced transcriptional repression through the spread of H3K9me3-containing heterochromatin, without DNA methylation of the trapped Kif2A promoter. Therefore, we demonstrate that targeting of tTRKRAB to a gene body in vivo results in reversible transcriptional repression through the spreading of facultative heterochromatin. This finding not only sheds light on KRAB-mediated transcriptional processes, but also suggests approaches for the externally controllable and reversible modulation of chromatin and transcription in vivo.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Sitios Genéticos/fisiología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/metabolismo , Transcripción Genética/fisiología , Animales , Proteínas Portadoras/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Cinesinas/biosíntesis , Cinesinas/genética , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética
19.
Blood ; 119(20): 4675-85, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22452978

RESUMEN

Chromatin remodeling is fundamental for B-cell differentiation. In the present study, we explored the role of KAP1, the cofactor of KRAB-ZFP transcriptional repressors, in this process. B-lymphoid-specific Kap1-KO mice displayed reduced numbers of mature B cells, lower steady-state levels of Abs, and accelerated rates of decay of neutralizing Abs after viral immunization. Transcriptome analyses of Kap1-deleted B splenocytes revealed an up-regulation of PTEN, the enzymatic counteractor of PIK3 signaling, and of genes encoding DNA-damage response factors, cell-cycle regulators, and chemokine receptors. ChIP/seq studies established that KAP1 bound at or close to several of these genes and controlled chromatin status at their promoters. Genome wide, KAP1 binding sites lacked active B cell-specific enhancers and were enriched in repressive histone marks, further supporting a role for this molecule in gene silencing in vivo. Likely responsible for tethering KAP1 to at least some of these targets, a discrete subset of KRAB-ZFPs is enriched in B lymphocytes. Our results therefore reveal the role of KRAB/KAP1-mediated epigenetic regulation in B-cell development and homeostasis.


Asunto(s)
Linfocitos B/fisiología , Diferenciación Celular/genética , Linfocitos/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Animales , Formación de Anticuerpos/genética , Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas Bacterianas/genética , Diferenciación Celular/inmunología , Diferenciación Celular/fisiología , Cromatina/metabolismo , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Epigénesis Genética/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Proteínas Luminiscentes/genética , Recuento de Linfocitos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito
20.
Mol Cell ; 44(3): 361-72, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22055183

RESUMEN

The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Metilasas de Modificación del ADN/metabolismo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...