Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 31(4)2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38711569

RESUMEN

The discovery of unusual negative thermal expansion (NTE) provides the opportunity to control the common but much desired property of thermal expansion, which is valuable not only in scientific interests but also in practical applications. However, most of the available NTE materials are limited to a narrow temperature range, and the NTE effect is generally weakened by various modifications. Here, we report an enhanced NTE effect that occurs over a wide temperature range α‾V=-5.24×10-5∘C-1,25-575∘C, and this NTE effect is accompanied by an abnormal enhanced tetragonality, a large spontaneous polarization, and a G-type antiferromagnetic ordering in the present perovskite-type ferroelectric of (1-x)PbTiO3-xBiCoO3. Specifically, for the composition of 0.5PbTiO3-0.5BiCoO3, an extensive volumetric contraction of ~4.8 % has been observed near the Curie temperature of 700 °C, which represents the highest level in PbTiO3-based ferroelectrics. According to our experimental and theoretical results, the large NTE originates from a synergistic effect of the ferroelectrostriction and spin crossover of cobalt on the crystal lattice. The actual NTE mechanism is contrasted with previous functional NTE materials, in which the NTE is simply coupled with one ordering such as electronic, magnetic, or ferroelectric ordering. The present study sheds light on the understanding of NTE mechanisms, and it attests that NTE could be simultaneously coupled with different orderings, which will pave a new way toward the design of large NTE materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA