Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 858(Pt 1): 159715, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306846

RESUMEN

Large ecological green spaces in cities are often designated as Urban Green Hearts (GHs) to support the ecological and recreational needs of urbanites. While GHs protection and sustainable development have been a high priority for urban planning and management, ecological environment quality (EEQ) of GHs has rarely been monitored and assessed. Here, we proposed a comprehensive assessment framework for EEQ based on entropy weights and rank-sum ratios methods, and applied the framework to the world's largest GH, Changsha-Zhuzhou-Xiangtan urban agglomeration Green Heart (CZT-GH), and its 5 km and 10 km buffer zones to examine the spatial-temporal dynamics of its EEQ from 2000 to 2019. Compared with the buffer zones, the EEQ in the CZT-GH was the best, with an annual average of 44.92 % of the area being High-grades EEQ. The restoration trend of EEQ was most conspicuous in only 8.4 % of CZT-GH, a small fraction compared with 25.1 % and 66.5 % of the CZT-GH showing deterioration trend and no change, respectively. Five factors were identified that calls for management attention: land use and cover change, spatial heterogeneity in vegetation restoration, temporal fluctuation in air quality improvement, comprehensive EEQ assessment and restoration, and capacity to cope with ecological risks. The approach, issues identified, and management measures proposed in this study should be applicable to GHs in general. The generic EEQ assessment framework and approaches developed in this study are generic and objective and therefore can be easily adapted to other regions; the procedures used to quantify the spatial and temporal changes of EEQ and identify underlying management issues provide essential information for formulating adaptive management measures of EEQ in general. SYNOPSIS: Taking the largest urban Green Heart as a case study, we established and applied a new general ecological environment quality (EEQ) evaluation system to monitor EEQ changes, identify issues, and propose management options.


Asunto(s)
Contaminación del Aire , Planificación de Ciudades , Ciudades , Planificación de Ciudades/métodos , Parques Recreativos , Desarrollo Sostenible , China , Urbanización , Conservación de los Recursos Naturales
3.
Proc Natl Acad Sci U S A ; 116(51): 25491-25496, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31792172

RESUMEN

Water bodies (WBs), such as lakes, ponds, and impoundments, provide essential ecosystem services for human society, yet their characteristics and changes over large areas remain elusive. Here we used unprecedented data layers derived from all Landsat images available between 1984 and 2015 to understand the overall characteristics and changes of WBs between 2 epochs (i.e., 1984 to 1999 and 2000 to 2015) in China. Results show that the abundance estimate of WBs greater than 1 km2 and the total WB surface area were 0.3 to 1.5 times and 0.2 to 0.5 times more than the previous estimates, respectively. The size-abundance and shoreline-area relationships of WBs in China conformed to the classic power scaling law, in contradiction to most previous studies. WB changes with various occurrence probabilities show widespread coexistence of disappearance of existent and emergence of new WBs across China driven primarily by human activities and climate change. Our results highlight the importance of using appropriate long-term satellite data to reveal the true properties and dynamics of WBs over large areas, which is essential for developing scaling theories and understanding the relative impacts of human activities and climate change on water resources in the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...