Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Fish Biol Fish ; 33(2): 513-534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122955

RESUMEN

Australia's fisheries have experience in responding individually to specific shocks to stock levels (for example, marine heatwaves, floods) and markets (for example, global financial crisis, food safety access barriers). The COVID-19 pandemic was, however, novel in triggering a series of systemic shocks and disruptions to the activities and operating conditions for all Australia's commercial fisheries sectors including those of the research agencies that provide the information needed for their sustainable management. While these disruptions have a single root cause-the public health impacts and containment responses to the COVID-19 pandemic-their transmission and effects have been varied. We examine both the impacts on Australian fisheries triggered by measures introduced by governments both internationally and domestically in response to the COVID-19 pandemic outbreak, and the countermeasures introduced to support continuity in fisheries and aquaculture production and supply chains. Impacts on fisheries production are identified by comparing annual and monthly catch data for Australia's commercial fisheries in 2020 with averages for the last 4-5 years. We combine this with a survey of the short-term disruption to and impacts on research organisations engaged in fisheries monitoring and assessment and the adaptive measures they deployed. The dominant impact identified was triggered by containment measures both within Australia and in export receiving countries which led to loss of export markets and domestic dine-in markets for live or fresh seafood. The most heavily impact fisheries included lobster and abalone (exported live) and specific finfishes (exported fresh or sold live domestically), which experienced short-term reductions in both production and price. At the same time, improved prices and demand for seafood sold into domestic retail channels were observed. The impacts observed were both a function of the disruptions due to the COVID-19 pandemic and the countermeasures and support programs introduced by various national and state-level governments across Australia to at least partly mitigate negative impacts on harvesting activities and supply chains. These included protecting fisheries activities from specific restrictive COVID-19 containment measures, pro-actively re-establishing freight links, supporting quota roll-overs, and introducing wage and businesses support packages. Fisheries research organisations were impacted to various degrees, largely determined by the extent to which their field monitoring activities were protected from specific restrictive COVID-19 containment measures by their state-level governments. Responses of these organisations included reducing fisheries dependent and independent data collection as required while developing strategies to continue to provide assessment services, including opportunistic innovations to harvest data from new data sources. Observed short run impacts of the COVID-19 pandemic outbreak has emphasised both the vulnerability of fisheries dependent on export markets, live or fresh markets, and long supply chains and the resilience of fisheries research programs. We suggest that further and more comprehensive analysis over a longer time period of the long-run impacts of subsequent waves of variants, extended pandemic containment measures, autonomous and planned adaptive responses would be beneficial for the development of more effective counter measures for when the next major external shock affects Australian fisheries.

2.
PLoS One ; 18(4): e0284711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079655

RESUMEN

BACKGROUND: There is global pressure to protect more of the world's oceans, primarily to protect biodiversity, and to fulfill the "30 by 30" goal set by the International Union for the Conservation of Nature (IUCN) that has recently been ratified under the Kunming-Montreal Global Biodiversity Framework at the fifteenth Conference of Parties (COP-15). Fully protected marine protected areas (MPAs) provide the highest level of protection for biodiversity from destructive or extractive practices and may limit access to the area itself. Fully protected MPAs (also commonly referred to as 'no-take MPAs') ban all fishing activities, thereby removing the realisation of direct economic and social benefits from resource extraction within these areas. However, fully protected MPAs can still act as source of productivity to surrounding areas, while also providing an important scientific reference role for off-reserve management thereby providing indirect economic and social outcomes, as well as biodiversity benefits. Sustainable marine resource management strives to achieve 'triple-bottom line' benefits, where economic, social, and biodiversity benefits are maximised in managed areas of the ocean. Implementing 'partially protected' areas (PPAs) in areas of high biodiversity value (i.e., inshore, productive areas of the ocean) that allow for some extractive activities, may allow us to supplement fully MPAs to meet IUCN conservation goals, while maximising social and economic benefits. However, our current understanding lacks explicit quantitative assessments of whether and how PPAs can benefit (or otherwise) biodiversity, while also providing economic and social benefits. This study provides a method to systematically review the scientific and legislative literature to understand how PPAs may contribute to conserving biodiversity while also providing social and economic benefits to Australia. METHODS AND EXPECTED OUTPUTS: The implementation of partially protected areas (PPAs) requires careful consideration of many potentially competing factors, and an understanding of the types of partial protection already in place in a region. We have developed a systematic literature review protocol focussing on the primary research question: "What is the current state of partially protected area (PPA) implementation across Australian marine areas?". The aim of the review is to provide marine resource managers with a comprehensive overview of PPAs in Australia, including associated goals and stated management strategies to achieve these goals, and a methodological approach that may be utilised globally. The review protocol was designed by the research team for a Fisheries Resource and Development Corporation (FRDC) strategic research grant and will seek input from a project steering committee for the project on aggregation of the initial results. The steering committee is made up of stakeholders from a wide range of backgrounds and interests, covering marine conservation, fisheries management, Indigenous values, and academic research in Australia. Multiple academic databases, alongside Australian Federal, State, and Territory legislation and related policies will be reviewed using Boolean keyword search strings for both academic databases and relevant grey literature. Results from eligible documents will be compiled and insights from the review collated to provide information on the status of PPA implementation in Australia.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Conservación de los Recursos Naturales/métodos , Australia , Océanos y Mares , Explotaciones Pesqueras , Peces , Ecosistema , Revisiones Sistemáticas como Asunto
3.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34566277

RESUMEN

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

4.
J Environ Manage ; 249: 109230, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419669

RESUMEN

Managing fisheries to meet social, economic and ecological objectives is a fundamental problem encountered in fisheries management worldwide. In Australia, fisheries management involves a complex set of national and sub-national policy arrangements, including those designed to deliver against ecologically sustainable development (ESD) objectives. The complex policy framework makes ensuring policy coherence and avoiding unintended consequences difficult, particularly where potential trade-offs are not made explicit. Coherence, or potential policy weakness, of Australian fisheries management in relation to ESD objectives was examined in a subset of Australian wild capture fisheries, at national and jurisdictional scales. Coherent policy frameworks with ESD objectives were found to be more likely at the legislative-level across jurisdictions (horizontal coherence), than other levels of implementation. Many fisheries had problems demonstrating coherence between legislation and management plans due to lack of inclusion of ESD policy themes at management and operational levels. Case studies revealed substantial variation in the likelihood for horizontal and vertical coherence between fisheries policy frameworks managing the same species. The lack of explicit ESD objectives observed in many Australian fisheries suggests a high likelihood of incoherence in fisheries management, or alternatively that managers may be informally persuing higher levels of policy coordination and coherence than can be detected. Lack of detectability of coherence is problematic for demonstrating accountability and transparency in decision-making and public policy. Furthermore, use of discretion by managers when developing management plans, in order to overcome policy weakness, may lead to drifts in individual management direction within a jurisdiction.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Australia , Objetivos , Desarrollo Sostenible
5.
Ambio ; 48(12): 1498-1515, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31098878

RESUMEN

While governments and natural resource managers grapple with how to respond to climatic changes, many marine-dependent individuals, organisations and user-groups in fast-changing regions of the world are already adjusting their behaviour to accommodate these. However, we have little information on the nature of these autonomous adaptations that are being initiated by resource user-groups. The east coast of Tasmania, Australia, is one of the world's fastest warming marine regions with extensive climate-driven changes in biodiversity already observed. We present and compare examples of autonomous adaptations from marine users of the region to provide insights into factors that may have constrained or facilitated the available range of autonomous adaptation options and discuss potential interactions with governmental planned adaptations. We aim to support effective adaptation by identifying the suite of changes that marine users are making largely without government or management intervention, i.e. autonomous adaptations, to better understand these and their potential interactions with formal adaptation strategies.


Asunto(s)
Biodiversidad , Ecosistema , Australia , Clima , Cambio Climático , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...