Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 36(11): e23179, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35906875

RESUMEN

This study investigated the protective effect of quercetin against cyclophosphamide-induced immunosuppressive indoleamine 2,3-dioxygenase (IDO) via the mechanism of oxidative-inflammatory stress and behavioral indices. Cyclophosphamide (CYP) was administered to male Wister rats at a dose of 100 mg/kg with or without quercetin 50 mg/kg every other day for 7 days. Experimental techniques including western blotting, immunohistochemistry analysis, and inflammatory and oxidative stress marker assays were carried out. We also conducted behavioral analyses such as open field, tail suspension, and Y-maze tests for cognitive assessment. The results indicated that quercetin attenuated oxidative-inflammatory stress induced by CYP in the hippocampus and cerebral cortex of male Wister rats by augmenting the activities of antioxidant enzymes and suppressing lipid peroxidation as well as inflammatory mediators such as interleukin-6 and interferon-γ. Concomitantly, quercetin partially prevented the alteration in brain tissue histological architecture and mitigated the activities of IDO/tryptophan 2,3-dioxygenase (TDO) and protein expression of IDO1. This was corroborated by the IDO-quercetin model obtained in silico, revealing a favorable inhibitory interaction between quercetin and the enzyme. Finally, the results of behavioral tests suggested that quercetin significantly prevented the depressive-like posture of the CYP-treated rats. Our study for the first time revealed that quercetin ameliorates the effect of CYP-instigated IDO/TDO activities in the cerebral cortex and hippocampus via restoration of antioxidant enzymes and preventing oxidative-inflammatory stress.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quercetina , Animales , Ratas , Masculino , Quercetina/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Hipocampo/metabolismo , Ciclofosfamida/toxicidad , Corteza Cerebral/metabolismo
2.
J Biochem ; 170(5): 611-622, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264310

RESUMEN

Mitotic kinesin Eg5 remains a validated target in antimitotic therapy because of its essential role in the formation and maintenance of bipolar mitotic spindles. Although numerous Eg5 inhibitors of synthetic origin are known, only a few inhibitors derived from natural products have been reported. In our study, we focused on identifying novel Eg5 inhibitors from medicinal plants, particularly Garcinia species. Herein, we report the inhibitory effect of kolaflavanone (KLF), a Garcinia biflavonoid, on the ATPase and microtubule-gliding activities of mitotic kinesin Eg5. Additionally, we showed the interaction mechanism between Eg5 and KLF via in vitro and in silico analyses. The results revealed that KLF inhibited both the basal and microtubule-activated ATPase activities of Eg5. The inhibitory mechanism is allosteric, without a direct competition with adenosine-5'-diphosphate for the nucleotide-binding site. KLF also suppressed the microtubule gliding of Eg5 in vitro. The Eg5-KLF model obtained from molecular docking showed that the biflavonoid exists within the α2/α3/L5 (α2: Lys111-Glu116 and Ile135-Asp149, α3: Asn206-Thr226; L5: Gly117-Gly134) pocket, with a binding pose comparable to known Eg5 inhibitors. Overall, our data suggest that KLF is a novel allosteric inhibitor of mitotic kinesin Eg5.


Asunto(s)
Biflavonoides , Inhibidores Enzimáticos , Garcinia , Cinesinas , Plantas Medicinales , Huso Acromático , Animales , Ratones , Adenosina Trifosfatasas/antagonistas & inhibidores , Biflavonoides/química , Biflavonoides/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Garcinia/química , Cinesinas/antagonistas & inhibidores , Cinesinas/química , Cinesinas/metabolismo , Mitosis/efectos de los fármacos , Simulación del Acoplamiento Molecular/métodos , Plantas Medicinales/química , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
3.
Chem Biol Drug Des ; 93(4): 544-555, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30536557

RESUMEN

Lassa virus infection is clinically characterized by multiorgan failure in humans. Without an FDA-approved vaccine, ribavirin is the frontline drug for the treatment but with attendant toxicities. 6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is an emerging alternative drug with proven anti-Lassa virus activity in experimental model. One of the mechanisms of action is its incorporation into nascent single-strand RNA (ssRNA) which forms complex with Lassa nucleoprotein (LASV-NP). Here, using molecular dynamics simulation, the structural and electrostatics changes associated with LASV-NP-ssRNA complex have been studied when none, one, or four of its bases has been substituted with T-705. The results demonstrated that glycosidic torsion angle χ (O4'-C1'-N1-C2) rotated from high-anti- (-110° and -60°) to the syn- conformation (+30) with increased T-705 substitution. Similarly, increased T-705 substitution resulted in increased splaying (55°-70°), loss of ssRNA-LASV-NP H-bond interaction, increased water influx into the ssRNA-binding pocket, and decreased electrostatic potentials of ssRNA pocket. Furthermore, strong positively correlated motion observed between α6 residues (aa: 128-145) and its contact ssRNA bases (5-7) is weakened in Apo biosystem and transitioned into anticorrelated motions in ssRNA-bound LASV-NP biosystem. Finally, LASV genome may become more accessible to cellular ribonuclease access with T-705 incorporation due to loss of NP interaction.


Asunto(s)
Virus Lassa/metabolismo , Nucleoproteínas/química , Nucleótidos/química , ARN/química , Sitios de Unión , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleoproteínas/metabolismo , ARN/metabolismo , Electricidad Estática , Agua/química , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA