Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(8): e0009524, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082815

RESUMEN

Many viruses have evolved structured RNA elements that can influence transcript abundance and translational efficiency, and help evade host immune factors by hijacking cellular machinery during replication. Here, we evaluated the functional impact of sub-genomic flaviviral RNAs (sfRNAs) known to stall exoribonuclease activity, by incorporating these elements into recombinant adeno-associated viral (AAV) genome cassettes. Specifically, sfRNAs from Dengue, Zika, Japanese Encephalitis, Yellow Fever, Murray Valley Encephalitis, and West Nile viruses increased transcript stability and transgene expression compared to a conventional woodchuck hepatitis virus element (WPRE). Further dissection of engineered transcripts revealed that sfRNA elements (i) require incorporation in cis within the 3' untranslated region (UTR) of AAV genomes, (ii) require minimal dumbbell structures to exert the observed effects, and (iii) can stabilize AAV transcripts independent of 5'-3' exoribonuclease 1 (XRN1)-mediated decay. Additionally, preliminary in vivo assessment of AAV vectors bearing sfRNA elements in mice achieved increased transcript abundance and expression in cardiac tissue. Leveraging the functional versatility of engineered viral RNA elements may help improve the potency of AAV vector-based gene therapies. IMPORTANCE: Viral RNA elements can hijack host cell machinery to control stability of transcripts and consequently, infection. Studies that help better understand such viral elements can provide insights into antiviral strategies and also potentially leverage these features for therapeutic applications. In this study, by incorporating structured flaviviral RNA elements into recombinant adeno-associated viral (AAV) vector genomes, we show improved AAV transcript stability and transgene expression can be achieved, with implications for gene transfer.


Asunto(s)
Dependovirus , Vectores Genéticos , ARN Viral , Dependovirus/genética , Animales , ARN Viral/genética , ARN Viral/metabolismo , Vectores Genéticos/genética , Ratones , Humanos , Estabilidad del ARN , Flaviviridae/genética , Transgenes , Células HEK293 , Genoma Viral , Regiones no Traducidas 3'/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética
2.
Circulation ; 143(19): 1894-1911, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33793303

RESUMEN

BACKGROUND: Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS: We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS: A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS: This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.


Asunto(s)
Síndrome de Barth/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Síndrome de Barth/fisiopatología , Humanos , Ratones , Ratones Noqueados
3.
Bioconjug Chem ; 31(7): 1835-1843, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32520527

RESUMEN

Lipidoid nanoparticles have been demonstrated to be effective for intracellular delivery of small molecule drugs, proteins, and nucleic acids. Stimuli-responsive lipidoid nanoparticles are able to further improve delivery efficacy and reduce carrier-induced toxicity. Our group previously developed reduction and photoresponsive combinatorial libraries of lipidoid nanoparticles for small molecule and biologics delivery. Herein, we describe the synthesis, characterization, and intracellular mRNA delivery application of a new library of pH-responsive lipidoid nanoparticles. The acid-degradable cyclic benzylidene acetal-containing cationic lipidoids (R-O16CBA) were synthesized through a multistep reaction and characterized by NMR and MS. The acid-triggered degradation of lipidoids was studied using NMR, MS, DLS, and TEM. The results revealed that the R-O16CBA lipidoid can be completely degraded at pH 5. The R-O16CBA lipidoid nanoparticles were then fabricated with different formulations of DOPE and cholesterol and tested in vitro for intracellular mRNA delivery.


Asunto(s)
Acetales/química , Técnicas Químicas Combinatorias , Portadores de Fármacos , Concentración de Iones de Hidrógeno , Lípidos/química , Nanopartículas/química , ARN Mensajero/administración & dosificación , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Transmisión , Análisis Espectral/métodos
4.
Angew Chem Int Ed Engl ; 59(35): 14957-14964, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32438474

RESUMEN

Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).


Asunto(s)
Nanopartículas/metabolismo , Proteínas/síntesis química , ARN Mensajero/química , Animales , Humanos , Ratones
5.
Circulation ; 141(4): 285-300, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31707831

RESUMEN

BACKGROUND: Current differentiation protocols to produce cardiomyocytes from human induced pluripotent stem cells (iPSCs) are capable of generating highly pure cardiomyocyte populations as determined by expression of cardiac troponin T. However, these cardiomyocytes remain immature, more closely resembling the fetal state, with a lower maximum contractile force, slower upstroke velocity, and immature mitochondrial function compared with adult cardiomyocytes. Immaturity of iPSC-derived cardiomyocytes may be a significant barrier to clinical translation of cardiomyocyte cell therapies for heart disease. During development, cardiomyocytes undergo a shift from a proliferative state in the fetus to a more mature but quiescent state after birth. The mechanistic target of rapamycin (mTOR)-signaling pathway plays a key role in nutrient sensing and growth. We hypothesized that transient inhibition of the mTOR-signaling pathway could lead cardiomyocytes to a quiescent state and enhance cardiomyocyte maturation. METHODS: Cardiomyocytes were differentiated from 3 human iPSC lines using small molecules to modulate the Wnt pathway. Torin1 (0 to 200 nmol/L) was used to inhibit the mTOR pathway at various time points. We quantified contractile, metabolic, and electrophysiological properties of matured iPSC-derived cardiomyocytes. We utilized the small molecule inhibitor, pifithrin-α, to inhibit p53 signaling, and nutlin-3a, a small molecule inhibitor of MDM2 (mouse double minute 2 homolog) to upregulate and increase activation of p53. RESULTS: Torin1 (200 nmol/L) increased the percentage of quiescent cells (G0 phase) from 24% to 48% compared with vehicle control (P<0.05). Torin1 significantly increased expression of selected sarcomere proteins (including TNNI3 [troponin I, cardiac muscle]) and ion channels (including Kir2.1) in a dose-dependent manner when Torin1 was initiated after onset of cardiomyocyte beating. Torin1-treated cells had an increased relative maximum force of contraction, increased maximum oxygen consumption rate, decreased peak rise time, and increased downstroke velocity. Torin1 treatment increased protein expression of p53, and these effects were inhibited by pifithrin-α. In contrast, nutlin-3a independently upregulated p53, led to an increase in TNNI3 expression and worked synergistically with Torin1 to further increase expression of both p53 and TNNI3. CONCLUSIONS: Transient treatment of human iPSC-derived cardiomyocytes with Torin1 shifts cells to a quiescent state and enhances cardiomyocyte maturity.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Naftiridinas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Benzotiazoles/farmacología , Línea Celular , Humanos , Imidazoles/farmacología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Piperazinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA