Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Emerg Infect Dis ; 30(7)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848249

RESUMEN

During March and April 2024, we studied dairy cattle specimens from a single farm in Texas, USA, using multiple molecular, cell culture, and next-generation sequencing pathogen detection techniques. Here, we report evidence that highly pathogenic avian influenza A(H5N1) virus strains of clade 2.3.4.4b were the sole cause of this epizootic.

2.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293180

RESUMEN

Background: Since its reemergence in 2017, yellow fever (YF) has been active in Nigeria. The Nigeria Centre for Disease Control (NCDC) has coordinated responses to the outbreaks with the support of the World Health Organization (WHO). The National Arbovirus and Vectors Research Centre (NAVRC) handles the vector component of these responses. This study sought to identify the vectors driving YF transmission and any of the targeted arboviruses and their distribution across states. Methods: Eggs, larvae and pupae as well as adult mosquitoes were collected in observational, analytical, and cross-sectional surveys conducted in sixteen YF outbreak states between 2017 and 2020. Adult mosquitoes (field-collected or reared from immature stages) were morphologically identified, and arboviruses were detected using RT-qPCR at the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID). Results: Aedes mosquitoes were collected in eleven of the sixteen states surveyed and the mosquitoes in nine states were found infected with arboviruses. A total of seven Aedes species were collected from different parts of the country. Aedes aegypti was the most dominant (51%) species, whereas Aedes africanus was the least (0.2%). Yellow fever virus (YFV) was discovered in 33 (~26%) out of the 127 Aedes mosquito pools. In addition to YFV, the Chikungunya virus (CHIKV) was found in nine pools. Except for Ae. africanus, all the Aedes species tested positive for at least one arbovirus. YFV-positive pools were found in six (6) Aedes species while CHIKV-positive pools were only recorded in two Aedes species. Edo State had the most positive pools (16), while Nasarawa, Imo, and Anambra states had the least (1 positive pool). Breteau and house indices were higher than normal transmission thresholds in all but one state. Conclusion: In Nigeria, there is a substantial risk of arbovirus transmission by Aedes mosquitoes, with YFV posing the largest threat at the moment. This risk is heightened by the fact that YFV and CHIKV have been detected in vectors across outbreak locations. Hence, there is an urgent need to step up arbovirus surveillance and control activities in the country.

3.
Emerg Microbes Infect ; 13(1): 2307511, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38240324

RESUMEN

Dengue is often misclassified and underreported in Africa due to inaccurate differential diagnoses of nonspecific febrile illnesses such as malaria, sparsity of diagnostic testing and poor clinical and genomic surveillance. There are limited reports on the seroprevalence and genetic diversity of dengue virus (DENV) in humans and vectors in Nigeria. In this study, we investigated the epidemiology and genetic diversity of dengue in the rainforest region of Nigeria. We screened 515 febrile patients who tested negative for malaria and typhoid fever in three hospitals in Oyo and Ekiti States in southern Nigeria with a combination of anti-dengue IgG/IgM/NS1 rapid test kits and metagenomic sequencing. We found that approximately 28% of screened patients had previous DENV exposure, with the highest prevalence in persons over sixty. Approximately 8% of the patients showed evidence of recent or current infection, and 2.7% had acute infection. Following sequencing of sixty samples, we assembled twenty DENV-1 genomes (3 complete and 17 partial). We found that all assembled genomes belonged to DENV-1 genotype III. Our phylogenetic analyses showed evidence of prolonged cryptic circulation of divergent DENV lineages in Oyo state. We were unable to resolve the source of DENV in Nigeria owing to limited sequencing data from the region. However, our sequences clustered closely with sequences in Tanzania and sequences reported in Chinese with travel history to Tanzania in 2019. This may reflect the wider unsampled bidirectional transmission of DENV-1 in Africa, which strongly emphasizes the importance of genomic surveillance in monitoring ongoing DENV transmission in Africa.


Asunto(s)
Virus del Dengue , Dengue , Malaria , Humanos , Virus del Dengue/genética , Nigeria/epidemiología , Bosque Lluvioso , Estudios Seroepidemiológicos , Filogenia , Estudios Transversales , Malaria/epidemiología , Secuenciación Completa del Genoma
4.
Viruses ; 15(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38005866

RESUMEN

Several mutations in the surface (S), basal core promoter (BCP), and precore (PC) genes of the hepatitis B virus have been linked to inaccurate diagnosis and the development of immune escape mutants (IEMs) of the infection, which can lead to chronic infection. Understanding the prevalence and spread of these mutations is critical in the global effort to eliminate HBV. Blood samples were collected from 410 people in Osun and Ekiti states, southwest Nigeria, between 2019 and 2021. Participants were drawn from a group of asymptomatic people who were either blood donors, outpatients, or antenatal patients with no record of HBV infection at the medical outpatients' unit of the hospital. DNA was extracted from plasma using a Qiagen DNEasy kit, followed by nested PCR targeting HBV S and BCP/PC genes. The Sanger sequencing method was used to sequence the positive PCR amplicons, which were further analyzed for IEMs, BCP, and PC mutations. HBV-DNA was detected in 12.4% (51/410) of individuals. After DNA amplification and purification, 47.1% (24) of the S gene and 76.5% (39) of the BCP/PC gene amplicons were successfully sequenced. Phylogenetic analysis showed that all the HBV sequences obtained in this study were classified as HBV genotype E. Mutational analysis of the major hydrophilic region (MHR) and a-determinant domain of S gene sequences revealed the presence of three immune escape mutations: two samples harbored a T116N substitution, six samples had heterogenous D144A/N/S/H substitution, and one sample had a G145E substitution, respectively. The BCP/PC region analysis revealed a preponderance of major BCP mutants, with the prevalence of BCP double substitutions ranging from 38.5% (A1762T) to 43.6% (G1764A). Previously reported classical PC mutant variants were observed in high proportion, including G1896A (33.3%) and G1899A (12.8%) mutations. This study confirms the strong presence of HBV genotype E in Nigeria, the ongoing circulation of HBV IEMs, and a high prevalence of BCP/PC mutants in the cohorts. This has implications for diagnosis and vaccine efficacy for efficient management and control of HBV in the country.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Embarazo , Humanos , Femenino , Virus de la Hepatitis B , Nigeria/epidemiología , Filogenia , ADN Viral/análisis , Mutación , Genotipo , Hepatitis B Crónica/epidemiología
5.
Nat Commun ; 14(1): 4693, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542071

RESUMEN

Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.


Asunto(s)
Fiebre de Lassa , Virus , Humanos , Nigeria/epidemiología , Metagenómica , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Virus/genética
6.
Virus Res ; 334: 199174, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467933

RESUMEN

Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.


Asunto(s)
Alphacoronavirus , Quirópteros , Infecciones por Coronavirus , Coronavirus , Animales , Alphacoronavirus/genética , Filogenia , Nigeria , Genoma Viral , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/genética , Genómica
7.
Nat Commun ; 14(1): 811, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781860

RESUMEN

Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Nigeria/epidemiología , SARS-CoV-2/genética
8.
Curr Top Microbiol Immunol ; 440: 23-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32418034

RESUMEN

In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Humanos , Virus Lassa/genética , Fiebre de Lassa/epidemiología , Fiebre de Lassa/genética , Filogenia , África Occidental/epidemiología , Zoonosis , Mamíferos
9.
Pathogens ; 11(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145450

RESUMEN

The rise of bat-associated zoonotic viruses necessitates a close monitoring of their natural hosts. Since the detection of severe acute respiratory syndrome coronavirus (SARS-CoV), it is evident that bats are vital reservoirs of coronaviruses (CoVs). In this study, we investigated the presence of CoVs in multiple bat species in Nigeria to identify viruses in bats at high-risk human contact interfaces. Four hundred and nine bats comprising four bat species close to human habitats were individually sampled from five states in Nigeria between 2019 and 2021. Coronavirus detection was done using broadly reactive consensus PCR primers targeting the RNA-dependent RNA polymerase (RdRp) gene of CoVs. Coronavirus RNA was detected in 39 samples (9.5%, CI 95%: [7.0, 12.8]), of which 29 were successfully sequenced. The identified CoVs in Nigerian bats were from the unclassified African alphacoronavirus lineage and betacoronavirus lineage D (Nobecovirus), with one sample from Hipposideros ruber coinfected with alphacoronavirus and betacoronavirus. Different bat species roosting in similar or other places had CoVs from the same genetic lineage. The phylogenetic and evolutionary dynamics data indicated a high CoV diversity in Nigeria, while host switching may have contributed to CoV evolution. Robust sentinel surveillance is recommended to enhance our knowledge of emerging and re-emerging coronaviruses.

10.
Microbiol Spectr ; 10(4): e0036622, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913205

RESUMEN

The dynamics of Lassa virus (LASV) infections in rodent reservoirs and their endemic human caseloads remain poorly understood. During the endemic period, human infections are believed to be associated with the seasonal migration of Mastomys natalensis, thought to be the primary reservoir that triggers multiple spillovers of LASV to humans. It has become imperative to improve LASV diagnosis in rodents while updating their prevalence in two regions of Lassa fever endemicity in Nigeria. Rodents (total, 942) were trapped in Ondo (531) and Ebonyi (411) states between October 2018 and April 2020 for detection of LASV using various tissues. Overall, the LASV prevalence was 53.6%. The outbreak area sampled in Ondo had three and two times higher capture success and LASV prevalence, respectively, than Ebonyi State. This correlated with the higher number of annual cases of Lassa fever (LF) in Ondo State versus Ebonyi State. All rodent genera (Mastomys, Rattus, Crocidura, Mus, and Tatera) captured in both states showed slightly variable LASV positivity, with Rattus spp. being the most predominantly infected (77.3%) rodents in Ondo State versus Mastomys spp. (41.6%) in Ebonyi State. The tissues with the highest LASV positivity were the kidneys, spleen, and testes. The finding of a relatively high LASV prevalence in all of the rodent genera captured highlights the complex interspecies transmission dynamics of LASV infections in the reservoirs and their potential association with increased environmental contact, as well as the risk of zoonotic spillover in these communities, which have the highest prevalence of Lassa fever in Nigeria. IMPORTANCE Our findings show the highest LASV positivity in small rodents ever recorded and the first direct detection of LASV in Tatera spp. Our findings also indicate the abundance of LASV-infected small rodents in houses, with probable interspecies transmission through vertical and horizontal coitus routes. Consequently, we suggest that the abundance of different reservoir species for LASV may fuel the epizootic outbreaks of LF in affected human communities. The high prevalence of LASV with the diversity of affected rodents has direct implications for our understanding of the transmission risk, mitigation, and ultimately, the prevention of LF in humans. Optimal tissues for LASV detection in rodents are also presented.


Asunto(s)
Epidemias , Fiebre de Lassa , Animales , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/prevención & control , Fiebre de Lassa/veterinaria , Virus Lassa , Murinae , Nigeria/epidemiología , Prevalencia , Ratas
11.
Sci Rep ; 12(1): 7616, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538241

RESUMEN

Mosquito vectors are a tremendous public health threat. One in six diseases worldwide is vector-borne transmitted mainly by mosquitoes. In the last couple of years, there have been active Yellow fever virus (YFV) outbreaks in many settings in Nigeria, and nationwide, entomological surveillance has been a significant effort geared towards understanding these outbreaks. In this study, we used a metagenomic sequencing approach to characterize viruses present in vector samples collected during various outbreaks of Yellow fever (YF) in Nigeria between 2017 and 2020. Mosquito samples were grouped into pools of 1 to 50 mosquitoes, each based on species, sex and location. Twenty-five pools of Aedes spp and one pool of Anopheles spp collected from nine states were sequenced and metagenomic analysis was carried out. We identified a wide diversity of viruses belonging to various families in this sample set. Seven different viruses detected included: Fako virus, Phasi Charoen-like virus, Verdadero virus, Chaq like-virus, Aedes aegypti totivirus, cell fusing agent virus and Tesano Aedes virus. Although there are no reports of these viruses being pathogenic, they are an understudied group in the same families and closely related to known pathogenic arboviruses. Our study highlights the power of next generation sequencing in identifying Insect specific viruses (ISVs), and provide insight into mosquito vectors virome in Nigeria.


Asunto(s)
Aedes , Arbovirus , Virus de Insectos , Virus ARN , Animales , Humanos , Mosquitos Vectores , Nigeria/epidemiología
12.
Health Soc Care Community ; 30(5): e3171-e3183, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191566

RESUMEN

Tuberculosis (TB) has continued to be a global public health issue, especially in developing countries, where Nigeria accounts for 4% of the global TB burden. However, to achieve the Sustainable Development Goals targets for 2030, there is a need for adequate and robust awareness campaigns to ensure that individuals in the communities are aware of the total TB program package. This study assessed the knowledge, attitudes and practices (KAP) towards TB of the residents of two communities affected by the TB scourge in Osun State, Nigeria. An interviewer-administered, semi-structured questionnaire adapted from the WHO-KAP study guide was employed, and the data generated were analysed using the SPSS statistical package. A total of 280 respondents participated in the study comprising 162 (57.9%) males and 118 (42.1%) females, a large percentage of the respondents (273/97.5%) know about TB and know that anybody can be infected (63.6%). However, in this study, we obtained the following KAP scores: overall good knowledge of TB: 60% (Iwo- 54.7% and Ikire-65.2%), overall good attitude towards TB: 50% (Iwo- 53.3% and Ikire- 46.7%) and overall good TB preventive practices 65.2% (Iwo- 66.6% and Ikire- 63.8%). Ikire respondents were significantly more knowledgeable than Iwo respondents (p = .002), while Iwo respondents had better TB attitudes than Ikire respondents (p = .03). Predictors of good KAP scores were accommodation type, education, age and main source of income of respondents. This study assessed the level of community TB-KAP and reinforced the need for a more robust awareness campaign for better TB health service utilisation.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Tuberculosis , Estudios Transversales , Femenino , Humanos , Masculino , Nigeria , Encuestas y Cuestionarios , Tuberculosis/prevención & control
13.
PeerJ ; 9: e12129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567846

RESUMEN

Next generation sequencing (NGS)-based studies have vastly increased our understanding of viral diversity. Viral sequence data obtained from NGS experiments are a rich source of information, these data can be used to study their epidemiology, evolution, transmission patterns, and can also inform drug and vaccine design. Viral genomes, however, represent a great challenge to bioinformatics due to their high mutation rate and forming quasispecies in the same infected host, bringing about the need to implement advanced bioinformatics tools to assemble consensus genomes well-representative of the viral population circulating in individual patients. Many tools have been developed to preprocess sequencing reads, carry-out de novo or reference-assisted assembly of viral genomes and assess the quality of the genomes obtained. Most of these tools however exist as standalone workflows and usually require huge computational resources. Here we present (Viral Genomes Easily Analyzed), a Snakemake workflow for analyzing RNA viral genomes. VGEA enables users to map sequencing reads to the human genome to remove human contaminants, split bam files into forward and reverse reads, carry out de novo assembly of forward and reverse reads to generate contigs, pre-process reads for quality and contamination, map reads to a reference tailored to the sample using corrected contigs supplemented by the user's choice of reference sequences and evaluate/compare genome assemblies. We designed a project with the aim of creating a flexible, easy-to-use and all-in-one pipeline from existing/stand-alone bioinformatics tools for viral genome analysis that can be deployed on a personal computer. VGEA was built on the Snakemake workflow management system and utilizes existing tools for each step: fastp (Chen et al., 2018) for read trimming and read-level quality control, BWA (Li & Durbin, 2009) for mapping sequencing reads to the human reference genome, SAMtools (Li et al., 2009) for extracting unmapped reads and also for splitting bam files into fastq files, IVA (Hunt et al., 2015) for de novo assembly to generate contigs, shiver (Wymant et al., 2018) to pre-process reads for quality and contamination, then map to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences, SeqKit (Shen et al., 2016) for cleaning shiver assembly for QUAST, QUAST (Gurevich et al., 2013) to evaluate/assess the quality of genome assemblies and MultiQC (Ewels et al., 2016) for aggregation of the results from fastp, BWA and QUAST. Our pipeline was successfully tested and validated with SARS-CoV-2 (n = 20), HIV-1 (n = 20) and Lassa Virus (n = 20) datasets all of which have been made publicly available. VGEA is freely available on GitHub at: https://github.com/pauloluniyi/VGEA under the GNU General Public License.

14.
Sci Rep ; 11(1): 13966, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234223

RESUMEN

Shiga toxigenic strains of E. coli (STEC) known to be etiological agents for diarrhea were screened for their incidence/occurrence in selected abattoirs sources in Osogbo metropolis of Osun State, Nigeria using a randomized block design. Samples were plated directly on selective and differential media and E. coli isolates. Multiplex PCR analysis was used to screen for the presence of specific virulence factors. These were confirmed serologically as non-O157 STEC using latex agglutination serotyping kit. Sequence analysis of PCR products was performed on a representative isolate showing the highest combination of virulence genes using the 16S gene for identification purposes only. Results showed that the average cfu/cm2 was significantly lower in the samples collected at Sekona-2 slaughter slab compared with those collected at Al-maleek batch abattoir and Sekona-1 slaughter slab in ascending order at P = 0.03. Moreover, the average cfu/cm2 E. coli in samples collected from butchering knife was significantly lower when compared with that of the workers' hand (P = 0.047) and slaughtering floor (P = 0.047) but not with the slaughter table (P = 0.98) and effluent water from the abattoir house (P = 0.39). These data suggest that the abattoir type may not be as important in the prevalence and spread of STEC as the hygiene practices of the workers. Sequence analysis of a representative isolate showed 100% coverage and 96.46% percentage identity with Escherichia coli O113:H21 (GenBank Accession number: CP031892.1) strain from Canada. This sequence was subsequently submitted to GenBank with accession number MW463885. From evolutionary analyses, the strain from Nigeria, sequenced in this study, is evolutionarily distant when compared with the publicly available sequences from Nigeria. Although no case of E. coli O157 was found within the study area, percent occurrence of non-O157 STEC as high as 46.3% at some of the sampled sites is worrisome and requires regulatory interventions in ensuring hygienic practices at the abattoirs within the study area.


Asunto(s)
Mataderos , Contaminación de Alimentos , Microbiología de Alimentos , Carne/microbiología , Escherichia coli Shiga-Toxigénica/genética , Microbiología Ambiental , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nigeria/epidemiología , Vigilancia en Salud Pública , Escherichia coli Shiga-Toxigénica/clasificación
15.
Sci Rep ; 11(1): 13689, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210997

RESUMEN

Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub-Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, all the samples were confirmed by RHDV virus-specific RT-PCR targeting the VP60 gene with the expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health policy in Nigeria, and Sub-Saharan Africa.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Virus de la Enfermedad Hemorrágica del Conejo/genética , Conejos/virología , Animales , Femenino , Genoma Viral , Masculino , Metagenómica , Nigeria , Filogenia
16.
J Immunoassay Immunochem ; 42(6): 633-647, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34029499

RESUMEN

Hepatitis B virus (HBV) infects about 2 billion people globally and accounts for mortality of about 800,000 from liver cirrhosis and hepatocellular carcinoma. Sub-Saharan Africa accounts for 70% of the Human Immunodeficiency Virus (HIV) global burden. HIV/HBV co-infection results in the early development of HBV complications, alterations of serological biomarkers of HBV. Two hundred and fifty patients with HIV/AIDS were screened for HBV and 20 (8%) were identified. The same number of HBV mono-infected individuals were recruited into the study and subsequently, HBV serological profiles which include HBsAg, HBsAb, HBeAg, HBeAb, HBcAbIgM, and HBcAbIgG were assayed using HBV ELISA kits. Mean age of patients in the HBV/HIV cohort was 45.5 years while the HBV mono-infected infected cohort was 30.5 years. The majority of the HBV/HIV co-infected individuals were females (85%). The frequency of HBeAg among HIV/HBV co-infected cohort was 25% and 15% for HBV mono-infected, while the frequency of HBeAb was higher (60%) among the cohort of HBV/HIV co-infected patients in comparison with the HBV mono-infected cohorts (50%). Two patients among the HIV/HBV co-infected cohort have the isolated anti-HBcAg serologic pattern. The study broadened the available evidence of comparative serologic profiles of Hepatitis B virus between cohorts of HBV/HIV co-infected individuals and HBV mono-infected patients in Nigeria.


Asunto(s)
Coinfección , Infecciones por VIH , Hepatitis B , Femenino , Infecciones por VIH/complicaciones , Hepatitis B/complicaciones , Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , Virus de la Hepatitis B/inmunología , Humanos , Neoplasias Hepáticas , Masculino , Persona de Mediana Edad , Nigeria
17.
AIMS Public Health ; 7(4): 736-757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294478

RESUMEN

Effective disease outbreak response has historically been a challenging accomplishment for the Nigerian health system due to an array of hurdles not unique to Nigeria but also found in other African nations which share its large size and complexity. However, the efficiency of the response mounted against the Ebola Virus Disease (EVD) outbreak of 2014 proved that indeed, though challenging, proactive and effective outbreak response is not impossible. With over 20 public health emergencies and infectious disease outbreaks between 2016 and 2018 alone, Nigeria is one of only five members of the World Health Organization (WHO) African Region to report five or more public health events per annum. There are many lessons that can be drawn from Nigeria's experience in handling outbreaks of infectious diseases. In this review, we discuss the history of emerging and re-emerging infectious disease outbreaks in Nigeria and explore the response strategies mounted towards each. We also highlight the significant successes and note-worthy limitations, which we have then utilized to proffer policy recommendations to strengthen the Nigerian public health emergency response systems.

18.
Sci Rep ; 10(1): 3180, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081931

RESUMEN

Fifty patients with unexplained fever and poor outcomes presented at Irrua Specialist Teaching Hospital (ISTH) in Edo State, Nigeria, an area endemic for Lassa fever, between September 2018 - January 2019. After ruling out Lassa fever, plasma samples from these epidemiologically-linked cases were sent to the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria, where we carried out metagenomic sequencing which implicated yellow fever virus (YFV) as the etiology of this outbreak. Twenty-nine of the 50 samples were confirmed positive for YFV by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), 14 of which resulted in genome assembly. Maximum likelihood phylogenetic analysis revealed that these YFV sequences formed a tightly clustered clade more closely related to sequences from Senegal than sequences from earlier Nigerian isolates, suggesting that the YFV clade responsible for this outbreak in Edo State does not descend directly from the Nigerian YFV outbreaks of the last century, but instead reflects a broader diversity and dynamics of YFV in West Africa. Here we demonstrate the power of metagenomic sequencing for identifying ongoing outbreaks and their etiologies and informing real-time public health responses, resulting in accurate and prompt disease management and control.


Asunto(s)
Sistemas de Computación , Brotes de Enfermedades , Metagenoma , Enfermedades no Diagnosticadas/epidemiología , Enfermedades no Diagnosticadas/genética , Fiebre Amarilla/epidemiología , Fiebre Amarilla/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Funciones de Verosimilitud , Masculino , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Enfermedades no Diagnosticadas/virología , Fiebre Amarilla/virología , Adulto Joven
19.
One Health ; 11: 100188, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33392378

RESUMEN

As the threat of arboviral diseases continues to escalate worldwide, the question of, "What types of human communities are at the greatest risk of infection?" persists as a key gap in the existing knowledge of arboviral diseases transmission dynamics. Here, we comprehensively review the existing literature on the socioeconomic drivers of the most common Aedes mosquito-borne diseases and Aedes mosquito presence/abundance. We reviewed a total of 182 studies on dengue viruses (DENV), chikungunya virus (CHIKV), yellow fever virus (YFVV), Zika virus (ZIKV), and presence of Aedes mosquito vectors. In general, associations between socioeconomic conditions and both Aedes-borne diseases and Aedes mosquitoes are highly variable and often location-specific. Although 50% to 60% of studies found greater presence or prevalence of disease or vectors in areas with lower socioeconomic status, approximately half of the remaining studies found either positive or null associations. We discuss the possible causes of this lack of conclusiveness as well as the implications it holds for future research and prevention efforts.

20.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332564

RESUMEN

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/análisis , Adolescente , Adulto , Animales , Teorema de Bayes , Reservorios de Enfermedades , Femenino , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Masculino , Cadenas de Markov , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Filogeografía , Roedores , Análisis de Secuencia de ARN , Zoonosis/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...